A survey of visual analytics techniques for machine learning

被引:144
作者
Yuan, Jun [1 ]
Chen, Changjian [1 ]
Yang, Weikai [1 ]
Liu, Mengchen [2 ]
Xia, Jiazhi [3 ]
Liu, Shixia [1 ]
机构
[1] Tsinghua Univ, BNRist, Beijing 100086, Peoples R China
[2] Microsoft, Redmond, WA 98052 USA
[3] Cent South Univ, Changsha 410083, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
visual analytics; machine learning; data quality; feature selection; model understanding; content analysis; SOCIAL MEDIA ANALYTICS; SELF-ORGANIZING MAPS; ANOMALY DETECTION; INTERACTIVE EXPLORATION; QUALITY ASSESSMENT; FEATURE-SELECTION; TEXT COLLECTIONS; TIME; VISUALIZATION; INFORMATION;
D O I
10.1007/s41095-020-0191-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Visual analytics for machine learning has recently evolved as one of the most exciting areas in the field of visualization. To better identify which research topics are promising and to learn how to apply relevant techniques in visual analytics, we systematically review 259 papers published in the last ten years together with representative works before 2010. We build a taxonomy, which includes three first-level categories: techniques before model building, techniques during modeling building, and techniques after model building. Each category is further characterized by representative analysis tasks, and each task is exemplified by a set of recent influential works. We also discuss and highlight research challenges and promising potential future research opportunities useful for visual analytics researchers.
引用
收藏
页码:3 / 36
页数:34
相关论文
共 303 条
  • [21] Comparing Visual-Interactive Labeling with Active Learning: An Experimental Study
    Bernard, Juergen
    Hutter, Marco
    Zeppelzauer, Matthias
    Fellner, Dieter
    Sedlmair, Michael
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (01) : 298 - 308
  • [22] Blascheck T, 2016, IEEE CONF VIS ANAL, P141, DOI 10.1109/VAST.2016.7883520
  • [23] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [24] Blumenschein M, 2018, IEEE CONF VIS ANAL, P36, DOI 10.1109/VAST.2018.8802486
  • [25] Visual Analytics for Model Selection in Time Series Analysis
    Boegl, Markus
    Aigner, Wolfgang
    Filzmoser, Peter
    Lammarsch, Tim
    Miksch, Silvia
    Rind, Alexander
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) : 2237 - 2246
  • [26] Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction
    Bogl, M.
    Filzmoser, P.
    Gschwandtner, T.
    Lammarsch, T.
    Leite, R. A.
    Miksch, S.
    Rind, A.
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (03) : 227 - 238
  • [27] Capturing and Visualizing Provenance From Data Wrangling
    Bors, Christian
    Gschwandtner, Theresia
    Miksch, Silvia
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2019, 39 (06) : 61 - 75
  • [28] ScatterBlogs2: Real-Time Monitoring of Microblog Messages Through User-Guided Filtering
    Bosch, Harald
    Thom, Dennis
    Heimerl, Florian
    Puettmann, Edwin
    Koch, Steffen
    Krueger, Robert
    Woerner, Michael
    Ertl, Thomas
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) : 2022 - 2031
  • [29] Bradel L, 2014, IEEE CONF VIS ANAL, P163, DOI 10.1109/VAST.2014.7042492
  • [30] Visual Analysis of Multi-Dimensional Categorical Data Sets
    Broeksema, Bertjan
    Telea, Alexandru C.
    Baudel, Thomas
    [J]. COMPUTER GRAPHICS FORUM, 2013, 32 (08) : 158 - 169