A survey of visual analytics techniques for machine learning

被引:144
作者
Yuan, Jun [1 ]
Chen, Changjian [1 ]
Yang, Weikai [1 ]
Liu, Mengchen [2 ]
Xia, Jiazhi [3 ]
Liu, Shixia [1 ]
机构
[1] Tsinghua Univ, BNRist, Beijing 100086, Peoples R China
[2] Microsoft, Redmond, WA 98052 USA
[3] Cent South Univ, Changsha 410083, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
visual analytics; machine learning; data quality; feature selection; model understanding; content analysis; SOCIAL MEDIA ANALYTICS; SELF-ORGANIZING MAPS; ANOMALY DETECTION; INTERACTIVE EXPLORATION; QUALITY ASSESSMENT; FEATURE-SELECTION; TEXT COLLECTIONS; TIME; VISUALIZATION; INFORMATION;
D O I
10.1007/s41095-020-0191-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Visual analytics for machine learning has recently evolved as one of the most exciting areas in the field of visualization. To better identify which research topics are promising and to learn how to apply relevant techniques in visual analytics, we systematically review 259 papers published in the last ten years together with representative works before 2010. We build a taxonomy, which includes three first-level categories: techniques before model building, techniques during modeling building, and techniques after model building. Each category is further characterized by representative analysis tasks, and each task is exemplified by a set of recent influential works. We also discuss and highlight research challenges and promising potential future research opportunities useful for visual analytics researchers.
引用
收藏
页码:3 / 36
页数:34
相关论文
共 303 条
  • [1] ACM, 2012, T INTELLIGENT SYSTEM, V3, P2
  • [2] FairSight: Visual Analytics for Fairness in Decision Making
    Ahn, Yongsu
    Lin, Yu-Ru
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 1086 - 1095
  • [3] Visual Analysis of Missing Values in Longitudinal Cohort Study Data
    Alemzadeh, S.
    Niemann, U.
    Ittermann, T.
    Voelzke, H.
    Schneider, D.
    Spiliopoulou, M.
    Buehler, K.
    Preim, B.
    [J]. COMPUTER GRAPHICS FORUM, 2020, 39 (01) : 63 - 75
  • [4] Alexander E, 2014, IEEE CONF VIS ANAL, P173, DOI 10.1109/VAST.2014.7042493
  • [5] Alsakran J, 2011, IEEE PAC VIS SYMP, P131, DOI 10.1109/PACIFICVIS.2011.5742382
  • [6] Real-Time Visualization of Streaming Text with a Force-Based Dynamic System
    Alsakran, Jamal
    Chen, Yang
    Luo, Dongning
    Zhao, Ye
    Yang, Jing
    Dou, Wenwen
    Liu, Shixia
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2012, 32 (01) : 34 - 45
  • [7] Do Convolutional Neural Networks Learn Class Hierarchy?
    Alsallakh, Bilal
    Jourabloo, Amin
    Ye, Mao
    Liu, Xiaoming
    Ren, Liu
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (01) : 152 - 162
  • [8] Visual Methods for Analyzing Probabilistic Classification Data
    Alsallakh, Bilal
    Hanbury, Allan
    Hauser, Helwig
    Miksch, Silvia
    Rauber, Andreas
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) : 1703 - 1712
  • [9] Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns
    Andrienko, G.
    Andrienko, N.
    Bremm, S.
    Schreck, T.
    von Landesberger, T.
    Bak, P.
    Keim, D.
    [J]. COMPUTER GRAPHICS FORUM, 2010, 29 (03) : 913 - 922
  • [10] Constructing Spaces and Times for Tactical Analysis in Football
    Andrienko, Gennady
    Andrienko, Natalia
    Anzer, Gabriel
    Bauer, Pascal
    Budziak, Guido
    Fuchs, Georg
    Hecker, Dirk
    Weber, Hendrik
    Wrobel, Stefan
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (04) : 2280 - 2297