Association between spectral electroencephalography power and autism risk and diagnosis in early development

被引:25
作者
Huberty, Scott [1 ]
Carter Leno, Virginia [2 ]
van Noordt, Stefon J. R. [1 ]
Bedford, Rachael [2 ,5 ]
Pickles, Andrew [2 ]
Desjardins, James A. [3 ]
Webb, Sara Jane [4 ]
Elsabbagh, Mayada [1 ]
机构
[1] McGill Univ, Montreal Neurol Inst Hosp, Azrieli Ctr Autism Res, Montreal, PQ, Canada
[2] Kings Coll London, Inst Psychiat Psychol & Neurosci, London, England
[3] Compute Ontario, Toronto, ON, Canada
[4] Seattle Childrens Res Inst, Ctr Child Hlth Behav & Dev, Seattle, WA USA
[5] Univ Bath, Bath, Avon, England
基金
英国医学研究理事会;
关键词
autism spectrum disorders; EEG; infants; siblings; TEST-RETEST RELIABILITY; IMAGING DATA STRUCTURE; EEG POWER; INFANTS; BRAIN; DISORDER; ATTENTION; BIOMARKER; SIBLINGS;
D O I
10.1002/aur.2518
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Autism spectrum disorder (ASD) has its origins in the atypical development of brain networks. Infants who are at high familial risk for, and later diagnosed with ASD, show atypical activity in multiple electroencephalography (EEG) oscillatory measures. However, infant-sibling studies are often constrained by small sample sizes. We used the International Infant EEG Data Integration Platform, a multi-site dataset with 432 participants, including 222 at high-risk for ASD, from whom repeated measurements of EEG were collected between the ages of 3-36 months. We applied a latent growth curve model to test whether familial risk status predicts developmental trajectories of spectral power across the first 3 years of life, and whether these trajectories predict ASD outcome. Change in spectral EEG power in all frequency bands occurred during the first 3 years of life. Familial risk, but not a later diagnosis of ASD, was associated with reduced power at 3 months, and a steeper developmental change between 3 and 36 months in nearly all absolute power bands. ASD outcome was not associated with absolute power intercept or slope. No associations were found between risk or outcome and relative power. This study applied an analytic approach not used in previous prospective biomarker studies of ASD, which was modeled to reflect the temporal relationship between genetic susceptibility, brain development, and ASD diagnosis. Trajectories of spectral power appear to be predicted by familial risk; however, spectral power does not predict diagnostic outcome above and beyond familial risk status. Discrepancies between current results and previous studies are discussed. Lay Summary Infants with an older sibling who is diagnosed with ASD are at increased risk of developing ASD themselves. This article tested whether EEG spectral power in the first year of life can predict whether these infants did or did not develop ASD.
引用
收藏
页码:1390 / 1403
页数:14
相关论文
共 60 条
[1]   Sex differences in the association between infant markers and later autistic traits [J].
Bedford, Rachael ;
Jones, Emily J. H. ;
Johnson, Mark H. ;
Pickles, Andrew ;
Charman, Tony ;
Gliga, Teodora .
MOLECULAR AUTISM, 2016, 7
[2]   Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years [J].
Benasich, April A. ;
Gou, Zhenkun ;
Choudhury, Naseem ;
Harris, Kenneth D. .
BEHAVIOURAL BRAIN RESEARCH, 2008, 195 (02) :215-222
[3]   Automated EEG mega-analysis I: Spectral and amplitude characteristics across studies [J].
Bigdely-Shamlo, Nima ;
Touryan, Jonathan ;
Ojeda, Alejandro ;
Kothe, Christian ;
Mullen, Tim ;
Robbins, Kay .
NEUROIMAGE, 2020, 207
[4]   EEG complexity as a biomarker for autism spectrum disorder risk [J].
Bosl, William ;
Tierney, Adrienne ;
Tager-Flusberg, Helen ;
Nelson, Charles .
BMC MEDICINE, 2011, 9
[5]   EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach [J].
Bosl, William J. ;
Tager-Flusberg, Helen ;
Nelson, Charles A. .
SCIENTIFIC REPORTS, 2018, 8
[6]   Variability in the analysis of a single neuroimaging dataset by many teams [J].
Botvinik-Nezer, Rotem ;
Holzmeister, Felix ;
Camerer, Colin F. ;
Dreber, Anna ;
Huber, Juergen ;
Johannesson, Magnus ;
Kirchler, Michael ;
Iwanir, Roni ;
Mumford, Jeanette A. ;
Adcock, R. Alison ;
Avesani, Paolo ;
Baczkowski, Blazej M. ;
Bajracharya, Aahana ;
Bakst, Leah ;
Ball, Sheryl ;
Barilari, Marco ;
Bault, Nadege ;
Beaton, Derek ;
Beitner, Julia ;
Benoit, Roland G. ;
Berkers, Ruud M. W. J. ;
Bhanji, Jamil P. ;
Biswal, Bharat B. ;
Bobadilla-Suarez, Sebastian ;
Bortolini, Tiago ;
Bottenhorn, Katherine L. ;
Bowring, Alexander ;
Braem, Senne ;
Brooks, Hayley R. ;
Brudner, Emily G. ;
Calderon, Cristian B. ;
Camilleri, Julia A. ;
Castrellon, Jaime J. ;
Cecchetti, Luca ;
Cieslik, Edna C. ;
Cole, Zachary J. ;
Collignon, Olivier ;
Cox, Robert W. ;
Cunningham, William A. ;
Czoschke, Stefan ;
Dadi, Kamalaker ;
Davis, Charles P. ;
Luca, Alberto De ;
Delgado, Mauricio R. ;
Demetriou, Lysia ;
Dennison, Jeffrey B. ;
Di, Xin ;
Dickie, Erin W. ;
Dobryakova, Ekaterina ;
Donnat, Claire L. .
NATURE, 2020, 582 (7810) :84-+
[7]   The EU-AIMS Longitudinal European Autism Project (LEAP): clinical characterisation [J].
Charman, Tony ;
Loth, Eva ;
Tillmann, Julian ;
Crawley, Daisy ;
Wooldridge, Caroline ;
Goyard, David ;
Ahmad, Jumana ;
Auyeung, Bonnie ;
Ambrosino, Sara ;
Banaschewski, Tobias ;
Baron-Cohen, Simon ;
Baumeister, Sarah ;
Beckmann, Christian ;
Bolte, Sven ;
Bourgeron, Thomas ;
Bours, Carsten ;
Brammer, Michael ;
Brandeis, Daniel ;
Brogna, Claudia ;
De Bruijn, Yvette ;
Chakrabarti, Bhismadev ;
Cornelissen, Ineke ;
Acqua, Flavio Dell' ;
Dumas, Guillaume ;
Durston, Sarah ;
Ecker, Christine ;
Faulkner, Jessica ;
Frouin, Vincent ;
Garces, Pilar ;
Ham, Lindsay ;
Hayward, Hannah ;
Hipp, Joerg ;
Holt, Rosemary J. ;
Isaksson, Johan ;
Johnson, Mark H. ;
Jones, Emily J. H. ;
Kundu, Prantik ;
Lai, Meng-Chuan ;
D'ardhuy, Xavier Liogier ;
Lombardo, Michael V. ;
Lythgoe, David J. ;
Mandl, Rene ;
Mason, Luke ;
Meyer-Lindenberg, Andreas ;
Moessnang, Carolin ;
Mueller, Nico ;
O'Dwyer, Laurence ;
Oldehinkel, Marianne ;
Oranje, Bob ;
Pandina, Gahan .
MOLECULAR AUTISM, 2017, 8
[8]   Real longitudinal data analysis for real people: Building a good enough mixed model [J].
Cheng, Jing ;
Edwards, Lloyd J. ;
Maldonado-Molina, Mildred M. ;
Komro, Kelli A. ;
Muller, Keith E. .
STATISTICS IN MEDICINE, 2010, 29 (04) :504-520
[9]   Sibling Recurrence and the Genetic Epidemiology of Autism [J].
Constantino, John N. ;
Zhang, Yi ;
Frazier, Thomas ;
Abbacchi, Anna M. ;
Law, Paul .
AMERICAN JOURNAL OF PSYCHIATRY, 2010, 167 (11) :1349-1356
[10]   Predictive impact of rare genomic copy number variations in siblings of individuals with autism spectrum disorders [J].
D'Abate, L. ;
Walker, S. ;
Yuen, R. K. C. ;
Tammimies, K. ;
Buchanan, J. A. ;
Davies, R. W. ;
Thiruvahindrapuram, B. ;
Wei, J. ;
Brian, J. ;
Bryson, S. E. ;
Dobkins, K. ;
Howe, J. ;
Landa, R. ;
Leef, J. ;
Messinger, D. ;
Ozonoff, S. ;
Smith, I. M. ;
Stone, W. L. ;
Warren, Z. E. ;
Young, G. ;
Zwaigenbaum, L. ;
Scherer, S. W. .
NATURE COMMUNICATIONS, 2019, 10 (1)