Painleve Analysis and Darboux Transformation for a Variable-Coefficient Boussinesq System in Fluid Dynamics with Symbolic Computation

被引:0
作者
Li Hong-Zhe [1 ]
Tian Bo [1 ,2 ,3 ]
Li Li-Li [1 ]
Zhang Hai-Qiang [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Opt Commun & Lightwave Technol, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
variable-coefficient Boussinesq system; Lax pair; Darboux transformation; soliton solutions; symbolic computation; TRAVELING-WAVE SOLUTIONS; EQUATIONS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The new soliton solutions for the variable-coefficient Boussinesq system, whose applications are seen in fluid dynamics, are studied in this paper with symbolic computation. First, the Pain love analysis is used to investigate its integrability properties. For the identified case we give, the Lax pair of the system is found, and then the Darboux transformation is constructed. At last, some new soliton solutions are presented via the Darboux method. Those solutions might be of some value in fluid dynamics.
引用
收藏
页码:831 / 836
页数:6
相关论文
共 50 条
  • [21] Darboux transformation and exact solutions of the variable-coefficient nonlocal Gerdjikov–Ivanov equation
    Yuru Hu
    Feng Zhang
    Xiangpeng Xin
    Hanze Liu
    Theoretical and Mathematical Physics, 2022, 211 : 460 - 472
  • [22] LAX PAIR, GENERALIZED DARBOUX TRANSFORMATION, AND SOLITONIC SOLUTIONS FOR A VARIABLE-COEFFICIENT COUPLED HIROTA SYSTEM IN AN INHOMOGENEOUS OPTICAL FIBER
    Wang, Meng
    Tian, Bo
    ROMANIAN JOURNAL OF PHYSICS, 2021, 66 (9-10):
  • [23] Backlund transformation and conservation laws for the variable-coefficient N-coupled nonlinear Schrodinger equations with symbolic computation
    Meng, Xiang Hua
    Tian, Bo
    Xu, Tao
    Zhang, Hai Qiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (05) : 969 - 974
  • [24] Symbolic computation on the long gravity water waves: scaling transformations, bilinear forms, N-soliton solutions and auto-Backlund transformation for a variable-coefficient variant Boussinesq system
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [25] Symbolic computation of conservation laws and exact solutions of a coupled variable-coefficient modified Korteweg-de Vries system
    Adem, Abdullahi Rashid
    Khalique, Chaudry Masood
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (04) : 650 - 660
  • [26] Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber
    Yang, Dan-Yu
    Tian, Bo
    Qu, Qi-Xing
    Zhang, Chen-Rong
    Chen, Su-Su
    Wei, Cheng-Cheng
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [27] Interactions of solitons in a variable-coefficient generalized Boussinesq system in shallow water
    Meng, De-Xin
    Gao, Yi-Tian
    Wang, Lei
    Gai, Xiao-Ling
    Lin, Guo-Dong
    PHYSICA SCRIPTA, 2010, 82 (04)
  • [28] DARBOUX TRANSFORMATION AND EXACT SOLUTIONS OF THE VARIABLE-COEFFICIENT NONLOCAL GERDJIKOV-IVANOV EQUATION
    Hu, Yuru
    Zhang, Feng
    Xin, Xiangpeng
    Liu, Hanze
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 211 (01) : 460 - 472
  • [29] Generalized Darboux transformation and rogue waves for a coupled variable-coefficient nonlinear Schrodinger system in an inhomogeneous optical fiber
    Yang, Dan-Yu
    Tian, Bo
    Shen, Yuan
    CHINESE JOURNAL OF PHYSICS, 2023, 82 : 182 - 193
  • [30] Similarity reductions for a generalized variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation
    Bo, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (06): : 1089 - 1097