Universal quantum gates via Yang-Baxterization of dihedral quantum double

被引:0
作者
Velez, Mario [1 ]
Ospina, Juan [1 ]
机构
[1] Univ EAFIT, Dept Ciencias Basicas, AA 3300, Medellin, Colombia
来源
ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1 | 2007年 / 4431卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recently discovered Yang-Baxterization process for the quantum double of the dihedral group algebra, is presented keeping on mind the quantum computation. The products resultant from Yang-Baxterization process are interpreted as universal quantum gates using the Bryslinski's theorem. Results are obtained for two-qubits and two-qutrits gates. Using the Zhang-Kauffman-Ge method (ZKGM), certain Hamiltonians responsible for the quantum evolution of the quantum gates are obtained. Possible physical systems such as anyons systems are mentioned as referents for practical implementation.
引用
收藏
页码:120 / +
页数:2
相关论文
共 8 条
  • [1] Baxter R J., 1982, EXACTLY SOLVED MODEL
  • [2] BIGELOW S, 2005, BRAID GROUPS IWAHORI
  • [3] BRAIDS, LINK POLYNOMIALS AND A NEW ALGEBRA
    BIRMAN, JS
    WENZL, H
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (01) : 249 - 273
  • [4] DANCER K, 2006, REPRESENTATION QUANT
  • [5] JONES VFR, 1990, INT J M P B, V4, P701, DOI 10.1142/S021797929000036X
  • [6] Kauffman L. H., 2004, NEW J PHYS, V6
  • [7] TEMPERLEY H, 1971, P ROY SOC LOND A MAT, V32, P251
  • [8] Yang-Baxterizations, universal quantum gates and Hamiltonians
    Zhang, Yong
    Kauffman, Louis H.
    Ge, Mo-Lin
    [J]. QUANTUM INFORMATION PROCESSING, 2005, 4 (03) : 159 - 197