Stabilizability criteria for discrete linear finite-dimensional systems in metric and ultrametric spaces

被引:2
作者
Borukhov, V. T. [1 ]
Kvetko, O. M. [1 ]
机构
[1] Belarussian Acad Sci, Inst Math, Minsk, BELARUS
关键词
CONTROLLABILITY SUBSPACES;
D O I
10.1134/S1064230710020012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Necessary and sufficient conditions of asymptotic stability and stabilizability for linear discrete causal infinite-dimensional systems in metric and ultrametric spaces are obtained.
引用
收藏
页码:169 / 177
页数:9
相关论文
共 23 条
[1]  
[Anonymous], 2001, LECT NOTES CONTROL I
[2]  
BLYUMIN SL, 1982, AVTOMAT TELEMEKH, P125
[3]  
BOGDANOV YS, 1959, MAT SBORNIK, V49, P255
[4]  
Borukhov V.T, 2008, ACTUAL MATHRMATICAL, P38
[5]  
BORUKHOV VT, 1999, P I MATH MINSK, V3, P46
[6]  
BORUKHOV VT, 1996, DOK NAN BELARUSI, V42, P17
[7]  
BORUKHOV VT, 2007, DIFFER URAVN IKH PRI, V43, P1019
[8]  
BORUKHOV VT, 2002, DIFF URAVN, V38, P826
[9]  
Brunovsky P., 1970, KYBERNETIKA PRAHA, V3, P173
[10]  
Gantmakher, 1988, THEORY MATRICES