Natural object classification using artificial neural networks

被引:5
|
作者
Singh, S [1 ]
Markou, M [1 ]
Haddon, J [1 ]
机构
[1] Univ Exeter, Dept Comp Sci, Pann Res, Exeter, Devon, England
来源
IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL III | 2000年
关键词
D O I
10.1109/IJCNN.2000.861294
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we apply artificial neural networks for classifying texture data of various natural objects found in FLIR images. Hermite functions are used for texture feature extraction front segmented regions of interest in natural scenes taken as a video sequence. A total of 2680 samples for a total of twelve different classes are used for object recognition. The results on correctly identifying twelve natural objects in scenes are compared across ten folds of the cross-validation study. Neural networks are found to be extremely effective in robust classification of our data giving an average recognition rate of 91.8%.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [1] Faint object classification using artificial neural networks
    SerraRicart, M
    Gaitan, V
    Garrido, L
    PerezFournon, I
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 115 (01): : 195 - 207
  • [2] FAINT OBJECT CLASSIFICATION USING ARTIFICIAL NEURAL NETWORKS
    SERRARICART, M
    ASTRONOMY FROM WIDE-FIELD IMAGING, 1994, (161): : 249 - 252
  • [3] Surface classification using artificial neural networks
    Mainsah, E
    Ndumu, DT
    Ndumu, AN
    THREE-DIMENSIONAL IMAGING AND LASER-BASED SYSTEMS FOR METROLOGY AND INSPECTION II, 1997, 2909 : 139 - 150
  • [4] Plant Classification Using Artificial Neural Networks
    Pacifico, Luciano D. S.
    Macario, Valmir
    Oliveira, Joao F. L.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [5] Performance evaluation of artificial neural networks for natural terrain classification
    Perpetual Hope Akwensi
    Eric Thompson Brantson
    Johanna Ngula Niipele
    Yao Yevenyo Ziggah
    Applied Geomatics, 2021, 13 : 453 - 465
  • [6] Performance evaluation of artificial neural networks for natural terrain classification
    Akwensi, Perpetual Hope
    Brantson, Eric Thompson
    Niipele, Johanna Ngula
    Ziggah, Yao Yevenyo
    APPLIED GEOMATICS, 2021, 13 (03) : 453 - 465
  • [7] Space Object Classification using Deep Neural Networks
    Jia, Bin
    Pham, Khanh D.
    Blasch, Erik
    Wang, Zhonghai
    Shen, Dan
    Chen, Genshe
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [8] Hierarchical classification of object images using neural networks
    Kim, Jong-Ho
    Lee, Jae-Won
    Kang, Byoung-Doo
    Kwon, O-Hwa
    Seong, Chi-Young
    Kim, Sang-Kyoon
    Park, Se-Myung
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 2, PROCEEDINGS, 2006, 3972 : 322 - 330
  • [9] Object Classification using Electromagnetic Data and Neural Networks
    Simsek, Ergun
    Islam, Raonaqul
    2024 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM, ACES 2024, 2024,
  • [10] Automated galaxy classification using artificial neural networks
    Odewahn, SC
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XX, 1997, 3164 : 110 - 119