An analytic solution for the equal-mass banana graph

被引:71
作者
Broedel, Johannes [1 ,2 ]
Duhr, Claude [3 ,4 ]
Dulat, Falko [5 ]
Marzucca, Robin [4 ]
Penante, Brenda [3 ]
Tancredi, Lorenzo [3 ]
机构
[1] Humboldt Univ, Inst Math, IRIS Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
[2] Humboldt Univ, Inst Phys, IRIS Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
[3] CERN, Theoret Phys Dept, Geneva, Switzerland
[4] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, Chemin Cyclotron 2, B-1348 Ottignies, Belgium
[5] Stanford Univ, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
关键词
NLO Computations; QCD Phenomenology; DIFFERENTIAL-EQUATIONS METHOD; FEYNMAN-INTEGRALS; ITERATED INTEGRALS; MASTER INTEGRALS; SUNRISE GRAPH; MODULAR-FORMS; DIAGRAM; CONTINUATION; BOX;
D O I
10.1007/JHEP09(2019)112
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present fully analytic results for all master integrals for the three-loop banana graph with four equal and non-zero masses. The results are remarkably simple and all integrals are expressed as linear combinations of iterated integrals of modular forms of uniform weight for the same congruence subgroup as for the two-loop equal-mass sunrise graph. We also show how to write the results in terms of elliptic polylogarithms evaluated at rational points.
引用
收藏
页数:33
相关论文
共 86 条
[1]   Iterated elliptic and hypergeometric integrals for Feynman diagrams [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
van Hoeij, M. ;
Imamoglu, E. ;
Raab, C. G. ;
Radu, C. -S. ;
Schneider, C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
[2]   Analytic results for the planar double box integral relevant to top-pair production with a closed top loop [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10)
[3]   Planar Double Box Integral for Top Pair Production with a Closed Top Loop to all orders in the Dimensional Regularization Parameter [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
PHYSICAL REVIEW LETTERS, 2018, 121 (14)
[4]   Feynman integrals and iterated integrals of modular forms [J].
Adams, Luise ;
Weinzierl, Stefan .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (02) :193-251
[5]   The kite integral to all orders in terms of elliptic polylogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Schweitzer, Armin ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (12)
[6]   The iterated structure of the all-order result for the two-loop sunrise integral [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
[7]   The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
[8]   The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
[9]   The two-loop sunrise graph with arbitrary masses [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
[10]   The two loop crossed ladder vertex diagram with two massive exchanges [J].
Aglietti, U. ;
Bonciani, R. ;
Grassi, L. ;
Remiddi, E. .
NUCLEAR PHYSICS B, 2008, 789 (1-2) :45-83