Efficient Global Approximation of Generalized Nonlinear l1-Regularized Solution Paths and Its Applications

被引:7
作者
Yuan, Ming [1 ]
Zou, Hui [2 ]
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
l(1)-regularization; LARS; LASSO; Solution path; Support vector pursuit; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; REGRESSION; MODELS; REGULARIZATION; LASSO;
D O I
10.1198/jasa.2009.tm08287
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider efficient construction of nonlinear solution paths for general l(1)-regularization. Unlike the existing methods that incrementally build the solution path through a combination of local linear approximation and recalibration, we propose an efficient global approximation to the whole solution path. With the loss function approximated by a quadratic spline, we show that the solution path can be computed using a generalized Lars algorithm. The proposed methodology avoids high-dimensional numerical optimization and thus provides faster and more stable computation. The methodology also can be easily extended to more general regularization framework. We illustrate such flexibility with several examples, including a generalization of the elastic net and a new method that effectively exploits the so-called "support vectors" in kernel logistic regression.
引用
收藏
页码:1562 / 1574
页数:13
相关论文
共 25 条
[1]  
[Anonymous], 2001, ADV NEURAL INFORM PR
[2]  
DeVore R.A., 1993, Constructive Approximation, volume 303 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
[3]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[4]  
EFRON B, 2006, P INT C MATH, V3, P595
[5]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[6]  
Friedman J., 2008, REGULARIZATION PATHS
[7]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[8]   ANALYSIS OF HIDDEN UNITS IN A LAYERED NETWORK TRAINED TO CLASSIFY SONAR TARGETS [J].
GORMAN, RP ;
SEJNOWSKI, TJ .
NEURAL NETWORKS, 1988, 1 (01) :75-89
[9]  
Hastie T, 2004, J MACH LEARN RES, V5, P1391
[10]  
Hastie T., 2008, ELEMENTS STAT LEARNI, V2nd