Spike and slab empirical Bayes sparse credible sets

被引:11
作者
Castillo, Ismael [1 ]
Szabo, Botond [2 ]
机构
[1] Sorbonne Univ, Lab Probabilites Stat & Modelisat, 4 Pl Jussieu, F-75005 Paris, France
[2] Leiden Univ, Leiden, Netherlands
基金
欧洲研究理事会;
关键词
convergence rates of posterior distributions; credible sets; empirical Bayes; spike and slab prior distributions; POSTERIOR CONCENTRATION; HORSESHOE ESTIMATOR; CONFIDENCE SETS; CONTRACTION; SELECTION; NEEDLES; STRAW; RATES;
D O I
10.3150/19-BEJ1119
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the sparse normal means model, coverage of adaptive Bayesian posterior credible sets associated to spike and slab prior distributions is considered. The key sparsity hyperparameter is calibrated via marginal maximum likelihood empirical Bayes. First, adaptive posterior contraction rates are derived with respect to d(q)-type-distances for q <= 2. Next, under a type of so-called excessive-bias conditions, credible sets are constructed that have coverage of the true parameter at prescribed 1 - alpha confidence level and at the same time are of optimal diameter. We also prove that the previous conditions cannot be significantly weakened from the minimax perspective.
引用
收藏
页码:127 / 158
页数:32
相关论文
共 34 条
[1]   Adapting to unknown sparsity by controlling the false discovery rate [J].
Abramovich, Felix ;
Benjamini, Yoav ;
Donoho, David L. ;
Johnstone, Iain M. .
ANNALS OF STATISTICS, 2006, 34 (02) :584-653
[2]  
[Anonymous], SPIKE SLAB EMPIRIC S
[3]  
[Anonymous], PROBLEMY PEREDACHI I
[4]  
[Anonymous], BERNOULL
[5]  
[Anonymous], ANN STASIST
[6]  
[Anonymous], ANN STAT
[7]  
Baraud Y, 2002, BERNOULLI, V8, P577
[8]   Dirichlet-Laplace Priors for Optimal Shrinkage [J].
Bhattacharya, Anirban ;
Pati, Debdeep ;
Pillai, Natesh S. ;
Dunson, David B. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) :1479-1490
[9]  
BIRGE L., 2001, J. Eur. Math. Soc. (JEMS), V3, P203, DOI DOI 10.1007/S100970100031
[10]  
Bull AD, 2013, PROBAB THEORY REL, V156, P889, DOI 10.1007/s00440-012-0446-z