Localization of light in lossless inhomogeneous dielectrics

被引:41
作者
Figotin, A [1 ]
Klein, A
机构
[1] Univ N Carolina, Dept Math, Charlotte, NC 28223 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
来源
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION | 1998年 / 15卷 / 05期
关键词
D O I
10.1364/JOSAA.15.001423
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The localization of electromagnetic waves in lossless inhomogeneous dielectric media is studied. We consider a three-dimensional lossless periodic medium (photonic crystal) having a gap in the frequency spectrum (photonic bandgap). If such a medium is perturbed by either a single defect or a random array of defects, exponentially localized electromagnetic waves arise with frequencies in the gap. For a single defect, we derive equations for these midgap frequencies and estimate their number. For a random medium, we show the occurrence of Anderson localization for electromagnetic waves. (C) 1998 Optical Society of America.
引用
收藏
页码:1423 / 1435
页数:13
相关论文
共 41 条
[21]   LOCALIZATION OF LIGHT [J].
JOHN, S .
PHYSICS TODAY, 1991, 44 (05) :32-40
[22]  
JOHN S, 1993, NATO ADV SCI INST SE, V308, P1
[23]  
KLAUS M, 1982, HELV PHYS ACTA, V55, P49
[24]   Localization and mode conversion for elastic waves in randomly layered media .1. [J].
Kohler, W ;
Papanicolaou, G ;
White, B .
WAVE MOTION, 1996, 23 (01) :1-22
[25]   Localization and mode conversion for elastic waves in randomly layered media .2. [J].
Kohler, W ;
Papanicolaou, G ;
White, B .
WAVE MOTION, 1996, 23 (02) :181-201
[26]  
Lifshits I. M., 1988, INTRO THEORY DISORDE
[27]  
Maradudin A. A., 1963, Theory of lattice dynamics in the harmonic approximation
[28]   ON ABSENCE OF DIFFUSION NEAR THE BOTTOM OF THE SPECTRUM FOR A RANDOM SCHRODINGER OPERATOR ON L2(RV)+ [J].
MARTINELLI, F ;
HOLDEN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (02) :197-217
[29]  
Maynard J, 1988, RANDOM MEDIA COMPOSI, P206
[30]  
PASTUR L, 1991, SPECTRA RANDOM ALMOS