Permafrost temperatures and thickness on the Qinghai-Tibet Plateau

被引:245
作者
Wu, Qingbai [1 ]
Zhang, Tingjun [1 ,2 ]
Liu, Yongzhi [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Frozen Soil Engn, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou, Peoples R China
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA
基金
中国国家自然科学基金;
关键词
permafrost temperature; permafrost thickness; thermal gradient; Qinghai-Tibet Plateau; CHANGING CLIMATE;
D O I
10.1016/j.gloplacha.2010.03.001
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Based on permafrost temperature measurements from 190 boreholes along the Qinghai-Tibet Highway/Railway since the early 1960s, we present spatial variations of permafrost temperatures, thermal gradients, and thickness on the Qinghai-Tibet Plateau. Overall, permafrost temperatures at 15 m depth are higher than -4.0 degrees C and about half of the permafrost has its temperature higher than -1.0 degrees C. The lowest average permafrost temperature is about -3.8 degrees C in the Fenghuo Mts. area. Permafrost temperatures are strongly controlled by elevation and latitude on the Qinghai-Tibet Plateau. Permafrost temperatures at 15 m depth decrease at a rate of 0.57 degrees C per 100 m altitude increase and 0.79 degrees C per latitude moving north. Permafrost temperature gradients change dramatically along the Qinghai-Tibet Highway/Railway, ranging from about 1.0 degrees C/100 m in Liangdaohe basin of southern Plateau to 8.0 degrees C/100 m in Kunlun Mts. area of northern Plateau. Assuming thermal conductivity of 2.0 Wm(- 1) degrees C-1 of bedrocks at depth, geothermal heat flux varies from 0.02 Wm(-2) to 0.16 Wm(-2). Permafrost thickness ranges from less than 10 m to over 300 m along the Qinghai-Tibet Highway/Railway. Besides elevation and latitude, geothermal heat flux also plays a key role in controlling permafrost temperature and thickness. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 20 条
[1]  
Anisimov O, 2006, AMBIO, V35, P169, DOI 10.1579/0044-7447(2006)35[169:PACCTR]2.0.CO
[2]  
2
[3]  
[Anonymous], 2000, GEOCRYOLOGY CHINA
[4]  
Cheng G., 1984, Acta Geograph. Sin., V39, P185, DOI DOI 10.11821/XB198402006
[5]   Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau [J].
Cheng, Guodong ;
Wu, Tonghua .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2007, 112 (F2)
[6]   Permafrost as a climatic indicator in northern Victoria Land, Antarctica [J].
Guglielmin, M ;
Dramis, F .
ANNALS OF GLACIOLOGY, VOL 29, 1999, 1999, 29 :131-135
[7]   Evidence and implications of recent climate change in northern Alaska and other arctic regions [J].
Hinzman, LD ;
Bettez, ND ;
Bolton, WR ;
Chapin, FS ;
Dyurgerov, MB ;
Fastie, CL ;
Griffith, B ;
Hollister, RD ;
Hope, A ;
Huntington, HP ;
Jensen, AM ;
Jia, GJ ;
Jorgenson, T ;
Kane, DL ;
Klein, DR ;
Kofinas, G ;
Lynch, AH ;
Lloyd, AH ;
McGuire, AD ;
Nelson, FE ;
Oechel, WC ;
Osterkamp, TE ;
Racine, CH ;
Romanovsky, VE ;
Stone, RS ;
Stow, DA ;
Sturm, M ;
Tweedie, CE ;
Vourlitis, GL ;
Walker, MD ;
Walker, DA ;
Webber, PJ ;
Welker, JM ;
Winker, K ;
Yoshikawa, K .
CLIMATIC CHANGE, 2005, 72 (03) :251-298
[8]   Permafrost and climatic change in China [J].
Jin, HJ ;
Li, SX ;
Cheng, GD ;
Wang, SL ;
Li, X .
GLOBAL AND PLANETARY CHANGE, 2000, 26 (04) :387-404
[9]   Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming [J].
Jin, Hui-jun ;
Yu, Qi-hao ;
Wang, Shao-ling ;
Lue, Lan-zhi .
COLD REGIONS SCIENCE AND TECHNOLOGY, 2008, 53 (03) :317-333
[10]   CHANGING CLIMATE - GEOTHERMAL EVIDENCE FROM PERMAFROST IN THE ALASKAN ARCTIC [J].
LACHENBRUCH, AH ;
MARSHALL, BV .
SCIENCE, 1986, 234 (4777) :689-696