Towards clinical utility of polygenic risk scores

被引:379
作者
Lambert, Samuel A. [1 ,2 ,3 ,4 ]
Abraham, Gad [1 ,2 ,5 ]
Inouye, Michael [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge Baker Syst Genom Initiat, Cambridge CB1 8RN, England
[2] Baker Heart & Diabet Inst, Cambridge Baker Syst Genom Initiat, Melbourne, Vic 3004, Australia
[3] Univ Cambridge, Dept Publ Hlth & Primary Care, MRC BHF Cardiovasc Epidemiol Unit, Cambridge CB1 8RN, England
[4] Hlth Data Res UK, Cambridge Substant Site, Wellcome Genome Campus, Hinxton, England
[5] Univ Melbourne, Dept Clin Pathol, Parkville, Vic 3010, Australia
[6] Alan Turing Inst, London, England
关键词
CORONARY-HEART-DISEASE; GENOME-WIDE ASSOCIATION; GENETIC RISK; PROSTATE-CANCER; PREDICTION MODELS; ANCESTRY; PERFORMANCE; FRAMEWORK; BREAST; COMMON;
D O I
10.1093/hmg/ddz187
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prediction of disease risk is an essential part of preventative medicine, often guiding clinical management. Risk prediction typically includes risk factors such as age, sex, family history of disease and lifestyle (e.g. smoking status); however, in recent years, there has been increasing interest to include genomic information into risk models. Polygenic risk scores (PRS) aggregate the effects of many genetic variants across the human genome into a single score and have recently been shown to have predictive value for multiple common diseases. In this review, we summarize the potential use cases for seven common diseases (breast cancer, prostate cancer, coronary artery disease, obesity, type 1 diabetes, type 2 diabetes and Alzheimer's disease) where PRS has or could have clinical utility. PRS analysis for these diseases frequently revolved around (i) risk prediction performance of a PRS alone and in combination with other non-genetic risk factors, (ii) estimation of lifetime risk trajectories, (iii) the independent information of PRS and family history of disease or monogenic mutations and (iv) estimation of the value of adding a PRS to specific clinical risk prediction scenarios. We summarize open questions regarding PRS usability, ancestry bias and transferability, emphasizing the need for the next wave of studies to focus on the implementation and health-economic value of PRS testing. In conclusion, it is becoming clear that PRS have value in disease risk prediction and there are multiple areas where this may have clinical utility.
引用
收藏
页码:R133 / R142
页数:10
相关论文
共 95 条
[1]   Genomic prediction of coronary heart disease [J].
Abraham, Gad ;
Havulinna, Aki S. ;
Bhalala, Oneil G. ;
Byars, Sean G. ;
De Livera, Alysha M. ;
Yetukuri, Laxman ;
Tikkanen, Emmi ;
Perola, Markus ;
Schunkert, Heribert ;
Sijbrands, Eric J. ;
Palotie, Aarno ;
Samani, Nilesh J. ;
Salomaa, Veikko ;
Ripatti, Samuli ;
Inouye, Michael .
EUROPEAN HEART JOURNAL, 2016, 37 (43) :3267-3278
[2]   Genomic risk prediction of complex human disease and its clinical application [J].
Abraham, Gad ;
Inouye, Michael .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2015, 33 :10-16
[3]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[4]   Integrating common and rare genetic variation in diverse human populations [J].
Altshuler, David M. ;
Gibbs, Richard A. ;
Peltonen, Leena ;
Dermitzakis, Emmanouil ;
Schaffner, Stephen F. ;
Yu, Fuli ;
Bonnen, Penelope E. ;
de Bakker, Paul I. W. ;
Deloukas, Panos ;
Gabriel, Stacey B. ;
Gwilliam, Rhian ;
Hunt, Sarah ;
Inouye, Michael ;
Jia, Xiaoming ;
Palotie, Aarno ;
Parkin, Melissa ;
Whittaker, Pamela ;
Chang, Kyle ;
Hawes, Alicia ;
Lewis, Lora R. ;
Ren, Yanru ;
Wheeler, David ;
Muzny, Donna Marie ;
Barnes, Chris ;
Darvishi, Katayoon ;
Hurles, Matthew ;
Korn, Joshua M. ;
Kristiansson, Kati ;
Lee, Charles ;
McCarroll, Steven A. ;
Nemesh, James ;
Keinan, Alon ;
Montgomery, Stephen B. ;
Pollack, Samuela ;
Price, Alkes L. ;
Soranzo, Nicole ;
Gonzaga-Jauregui, Claudia ;
Anttila, Verneri ;
Brodeur, Wendy ;
Daly, Mark J. ;
Leslie, Stephen ;
McVean, Gil ;
Moutsianas, Loukas ;
Nguyen, Huy ;
Zhang, Qingrun ;
Ghori, Mohammed J. R. ;
McGinnis, Ralph ;
McLaren, William ;
Takeuchi, Fumihiko ;
Grossman, Sharon R. .
NATURE, 2010, 467 (7311) :52-58
[5]   Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children [J].
Bonifacio, Ezio ;
Beyerlein, Andreas ;
Hippich, Markus ;
Winkler, Christiane ;
Vehik, Kendra ;
Weedon, Michael N. ;
Laimighofer, Michael ;
Hattersley, Andrew T. ;
Krumsiek, Jan ;
Frohnert, Brigitte I. ;
Steck, Andrea K. ;
Hagopian, William A. ;
Krischer, Jeffrey P. ;
Lernmark, Ake ;
Rewers, Marian J. ;
She, Jin-Xiong ;
Toppari, Jorma ;
Akolkar, Beena ;
Oram, Richard A. ;
Rich, Stephen S. ;
Ziegler, Anette-G. .
PLOS MEDICINE, 2018, 15 (04)
[6]   Quantifying the impact of genes on body mass index during the obesity epidemic: longitudinal findings from the HUNT Study [J].
Brandkvist, Maria ;
Bjorngaard, Johan Hakon ;
Odegard, Ronnaug Astri ;
Asvold, Bjorn Olav ;
Sund, Erik R. ;
Vie, Gunnhild Aberge .
BMJ-BRITISH MEDICAL JOURNAL, 2019, 366
[7]   The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 [J].
Buniello, Annalisa ;
MacArthur, Jacqueline A. L. ;
Cerezo, Maria ;
Harris, Laura W. ;
Hayhurst, James ;
Malangone, Cinzia ;
McMahon, Aoife ;
Morales, Joannella ;
Mountjoy, Edward ;
Sollis, Elliot ;
Suveges, Daniel ;
Vrousgou, Olga ;
Whetzel, Patricia L. ;
Amode, Ridwan ;
Guillen, Jose A. ;
Riat, Harpreet S. ;
Trevanion, Stephen J. ;
Hall, Peggy ;
Junkins, Heather ;
Flicek, Paul ;
Burdett, Tony ;
Hindorff, Lucia A. ;
Cunningham, Fiona ;
Parkinson, Helen .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D1005-D1012
[8]  
Censin J.C., 2019, BIORXIV, DOI [10.1101/523217, DOI 10.1101/523217]
[9]   Developing and evaluating polygenic risk prediction models for stratified disease prevention [J].
Chatterjee, Nilanjan ;
Shi, Jianxin ;
Garcia-Closas, Montserrat .
NATURE REVIEWS GENETICS, 2016, 17 (07) :392-406
[10]   Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies [J].
Chatterjee, Nilanjan ;
Wheeler, Bill ;
Sampson, Joshua ;
Hartge, Patricia ;
Chanock, Stephen J. ;
Park, Ju-Hyun .
NATURE GENETICS, 2013, 45 (04) :400-405