Optimal Approximation of the First-Order Correctorin Multiscale Stochastic Elliptic PDE

被引:0
|
作者
Geiersbach, Carline [1 ]
Heitzinger, Clemens [1 ,2 ]
Tulzer, Gerhard [1 ]
机构
[1] TU Vienna, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
来源
基金
奥地利科学基金会;
关键词
numerical stochastic homogenization; stochastic elliptic PDE; optimization; multiscale problems; RANDOM COMPOSITES; MEDIA; HOMOGENIZATION; SIZE; ELEMENT;
D O I
10.1137/16M106011X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work addresses the development of an optimal computational scheme for the approximation of the first-order corrector arising in the stochastic homogenization of linear elliptic PDEs in divergence form. Equations of this type describe, for exafriple, diffusion phenomena in materials with a heterogeneous microstructure, but require enormous computational efforts in order to obtain reliable results. We derive no optimization problem for the needed computationnl work with a given error tolerance, then extract the governing parameters from numerical experiments, and finally solve the obtained optimization problem. The numerical approach investigated here is a stochastic sampling scheme for the probability space connected with a finite-element method for the discretization of the pltysical space.
引用
收藏
页码:1246 / 1262
页数:17
相关论文
共 50 条