Remotely Sensed Data Clustering Using K-Harmonic Means Algorithm and Cluster Validity Index

被引:6
|
作者
Mahi, Habib [1 ]
Farhi, Nezha [1 ]
Labed, Kaouter [2 ]
机构
[1] Ctr Space Tech, Earth Observat Div, Arzew, Algeria
[2] Univ USTOMB, Fac Math & Comp Sci Mohamed Boudiaf, Oran, Algeria
来源
COMPUTER SCIENCE AND ITS APPLICATIONS, CIIA 2015 | 2015年 / 456卷
关键词
Clustering; KHM; Cluster validity indices; Remotely sensed data; K-means; FCM;
D O I
10.1007/978-3-319-19578-0_9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a new clustering method based on the combination of K-harmonic means (KHM) clustering algorithm and cluster validity index for remotely sensed data clustering. The KHM is essentially insensitive to the initialization of the centers. In addition, cluster validity index is introduced to determine the optimal number of clusters in the data studied. Four cluster validity indices were compared in this work namely, DB index, XB index, PBMF index, WB-index and a new index has been deduced namely, WXI. The Experimental results and comparison with both K-means (KM) and fuzzy C-means (FCM) algorithms confirm the effectiveness of the proposed methodology.
引用
收藏
页码:105 / 116
页数:12
相关论文
共 50 条
  • [41] An adaptive spatially constrained fuzzy c-means algorithm for multispectral remotely sensed imagery clustering
    Zhang, Hua
    Shi, Wenzhong
    Hao, Ming
    Li, Zhenxuan
    Wang, Yunjia
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (08) : 2207 - 2237
  • [42] A Novel Clustering Algorithm for Big Data: K-Means-Fuzzy C Means
    Manikandan, A.
    Danapaquiame, N.
    Gayathri, R.
    Kodhai, E.
    Amudhavel, J.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2018, 11 (01): : 85 - 93
  • [43] Initial Seed Selection for Mixed Data Using Modified K-means Clustering Algorithm
    Sajidha, S. A.
    Desikan, Kalyani
    Chodnekar, Siddha Prabhu
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (04) : 2685 - 2703
  • [44] Optimization of K-Means clustering Using Genetic Algorithm
    Irfan, Shadab
    Dwivedi, Gaurav
    Ghosh, Subhajit
    2017 INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES FOR SMART NATION (IC3TSN), 2017, : 157 - 162
  • [45] A Novel K-Means based Clustering Algorithm for Big Data
    Sinha, Ankita
    Jana, Prasanta K.
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 1875 - 1879
  • [46] K-MEANS plus : A DEVELOPED CLUSTERING ALGORITHM FOR BIG DATA
    Niu, Kun
    Gao, Zhipeng
    Jiao, Haizhen
    Deng, Nanjie
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 141 - 144
  • [47] An evolutionary K-means algorithm for clustering time series data
    Zhang, H
    Ho, TB
    Lin, MS
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 1282 - 1287
  • [48] The fast clustering algorithm for the big data based on K-means
    Xie, Ting
    Zhang, Taiping
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (06)
  • [49] Enhancing the K-means Algorithm Using Cluster Adjustment
    Yamout, Fadi
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 307 - 311
  • [50] Data clustering using K-Means based on Crow Search Algorithm
    Lakshmi, K.
    Visalakshi, N. Karthikeyani
    Shanthi, S.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2018, 43 (11):