Nonlinear Skew Lie Triple Derivations between Factors

被引:66
作者
Li, Chang Jing [1 ]
Zhao, Fang Fang [2 ]
Chen, Quan Yuan [3 ]
机构
[1] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Peoples R China
[2] Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
[3] Jingdezhen Ceram Inst, Coll Informat, Jingdezhen 333403, Peoples R China
基金
中国国家自然科学基金;
关键词
Skew Lie triple derivation; derivation; factor; VON-NEUMANN-ALGEBRAS; JORDAN ASTERISK-DERIVATIONS; QUADRATIC FUNCTIONALS; PRODUCT; B(H);
D O I
10.1007/s10114-016-5690-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a factor. For A, B is an element of A, define by [A, B](*) = AB-BA* the skew Lie product of A and B. In this article, it is proved that a map Phi : A -> A satisfies Phi([[A, B](*), C](*)) = [[Phi( A), B](*), C](*) + [[A, Phi( B)](*), C](*) + [[A, B](*), Phi(C)](*) for all A, B, C is an element of A if and only if F is an additive (*)-derivation.
引用
收藏
页码:821 / 830
页数:10
相关论文
共 15 条
[1]   A Characterization of *-Automorphism on B(H) [J].
An, Run Ling ;
Hou, Jin Chuan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (02) :287-294
[2]   Maps preserving products XY-YX* on von Neumann algebras [J].
Bai, Zhaofang ;
Du, Shuanping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) :103-109
[3]  
Bresar M, 2000, PUBL MATH-DEBRECEN, V57, P121
[4]   Maps preserving product XY-YX* on factor von Neumann algebras [J].
Cui, Jianlian ;
Li, Chi-Kwong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :833-842
[5]   Nonlinear maps preserving Jordan *-products [J].
Dai, Liqing ;
Lu, Fangyan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :180-188
[6]  
Fosner M., 2002, SE ASIAN B MATH, P27, DOI DOI 10.1007/S100120200023
[7]  
Halmos P, 1982, HILBERT SPACE PROBLE
[8]   Non-linear ξ-Jordan *-derivations on von Neumann algebras [J].
Li, Changjing ;
Lu, Fangyan ;
Fang, Xiaochun .
LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (04) :466-473
[9]   Nonlinear mappings preserving product XY plus YX* on factor von Neumann algebras [J].
Li, Changjing ;
Lu, Fangyan ;
Fang, Xiaochun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) :2339-2345
[10]   A condition for a subspace of B(H) to be an ideal [J].
Molnar, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 235 (235) :229-234