Pre-pulverizing Ni-rich layered oxide cathodes via "liquid explosive" infiltration toward endurable 4.5 V lithium batteries

被引:34
作者
Yang, Qifan [1 ,2 ,3 ]
Yao, Zhenguo [1 ,2 ,4 ]
Lai, Chuanzhong [1 ,2 ,3 ]
Li, Chilin [1 ,2 ,3 ]
机构
[1] Shanghai Inst Ceram, Chinese Acad Sci, State Key Lab High Performance Ceram & Superfine M, Shanghai 201899, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, Shanghai 201899, Peoples R China
[4] BTR New Mat Grp CO LTD, Shenzhen 518106, Peoples R China
基金
中国国家自然科学基金;
关键词
Ni-rich layered oxides; Liquid explosive; Interface modulation; Primary particle system; Li batteries; POSITIVE ELECTRODE MATERIALS; TRANSITION-METAL OXIDE; HIGH-ENERGY; ION BATTERIES; ELECTROCHEMICAL PROPERTIES; CYCLING PERFORMANCE; HIGH-CAPACITY; SURFACE; DEGRADATION; GENERATION;
D O I
10.1016/j.ensm.2022.06.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanical strain derived from anisotropic lattice distortion would lead to the spread of microcracks in LiNixMnyCo1-x-yO2 (NMC) secondary particles and therefore the rapid capacity deterioration. Herein, we propose a 'liquid explosion' strategy to pre-pulverize the agglomerated secondary particle system of LiNi0.8Mn0.1Co0.1O2 (NMC811) massively into an unusual primary particle system via the infiltration of P3N3Cl6 (PNCL) melt and its following gasification. This primary particle system avoids the prevalence of microcracks and degradation of electric contact in electrode network. The high dispersity of particles enables the more homogenous and compact electrode network, which is well preserved even after long-term cycling. The residual PNCL releases N, Cl and P elements, which are implanted into an ultrathin cathode electrolyte interphase (CEI) and lithiated into conductive Li3N, LiCl and LixPOyFz components. The modified Li-NMC cells exhibit the ultralong cycling life (at least 1100 cycles at 1 C) with very small capacity fading rate (0.043% per cycle) even under the protocol of high cut-off voltage (4.5 V). This endurable discrete-particle-type electrode network also endows the high-loading cathode with excellent capacity retention even under the configuration of pouch cell. The concept of 'liquid explosive' provides a scalable solution to high-performance NMC based materials for practical battery application.
引用
收藏
页码:819 / 828
页数:10
相关论文
共 66 条
[1]   Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode [J].
Bi, Yujing ;
Tao, Jinhui ;
Wu, Yuqin ;
Li, Linze ;
Xu, Yaobin ;
Hu, Enyuan ;
Wu, Bingbin ;
Hu, Jiangtao ;
Wang, Chongmin ;
Zhan, Ji-Guang ;
Qi, Yue ;
Xiao, Jie .
SCIENCE, 2020, 370 (6522) :1313-+
[2]   Enhancing the Electrochemical Performance of LiNi0.4Co0.2Mn0.4O2 by V2O5/LiV3O8 Coating [J].
Chen, Zhen ;
Wang, Zeli ;
Kim, Guk-Tae ;
Yang, Guang ;
Wang, Huanhuan ;
Wang, Xuesen ;
Huang, Yizhong ;
Passerini, Stefano ;
Shen, Zexiang .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (30) :26994-27003
[3]   Metal-Organic Frameworks as Electrolyte Additives To Enable Ultrastable Plating/Stripping of Li Anode with Dendrite Inhibition [J].
Chu, Fulu ;
Hu, Jiulin ;
Wu, Chenglong ;
Yao, Zhenguo ;
Tian, Jing ;
Li, Zheng ;
Li, Chilin .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (04) :3869-3879
[4]   Enhancing the Thermal and Upper Voltage Performance of Ni-Rich Cathode Material by a Homogeneous and Facile Coating Method: Spray-Drying Coating with Nano-Al2O3 [J].
Du, Ke ;
Xie, Hongbin ;
Hu, Guorong ;
Peng, Zhongdong ;
Cao, Yanbing ;
Yu, Fan .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (27) :17713-17720
[5]   Polyvinylpyrrolidone-Induced Uniform Surface-Conductive Polymer Coating Endows Ni-Rich LiNi0.8Co0.1Mn0.1O2 with Enhanced Cyclability for Lithium-Ion Batteries [J].
Gan, Qingmeng ;
Qin, Ning ;
Zhu, Youhuan ;
Huang, Zixuan ;
Zhang, Fangchang ;
Gu, Shuai ;
Xie, Jiwei ;
Zhang, Kaili ;
Lu, Li ;
Lu, Zhouguang .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (13) :12594-12604
[6]   Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode [J].
Gao, Han ;
Cai, Jiyu ;
Xu, Gui-Liang ;
Lo, Luxi ;
Ren, Yang ;
Meng, Xiangbo ;
Amine, Khalil ;
Chen, Zonghai .
CHEMISTRY OF MATERIALS, 2019, 31 (08) :2723-2730
[7]   Thermal stability of lithium nickel oxide derivatives.: Part II:: LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30).: Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2 [J].
Guilmard, M ;
Croguennec, L ;
Delmas, C .
CHEMISTRY OF MATERIALS, 2003, 15 (23) :4484-4493
[8]   New Chemical Insights into the Beneficial Role of Al2O3 Cathode Coatings in Lithium-ion Cells [J].
Hall, David S. ;
Gauthier, Roby ;
Eldesoky, Ahmed ;
Murray, Vivian S. ;
Dahn, J. R. .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (15) :14095-14100
[9]   Anchoring Interfacial Nickel Cations on Single-Crystal LiNi0.8Co0.1Mn0.1O2 Cathode Surface via Controllable Electron Transfer [J].
Han, Yongkang ;
Heng, Shuai ;
Wang, Yan ;
Qu, Qunting ;
Zheng, Honghe .
ACS ENERGY LETTERS, 2020, 5 (07) :2421-2433
[10]   Surface layer design of cathode materials based on mechanical stability towards long cycle life for lithium secondary batteries [J].
Hu, Xitao ;
Qiang, Wenjiang ;
Huang, Bingxin .
ENERGY STORAGE MATERIALS, 2017, 8 :141-146