Molecular phenotyping of a UK population: defining the human serum metabolome

被引:166
作者
Dunn, Warwick B. [1 ,2 ,3 ]
Lin, Wanchang [1 ,3 ]
Broadhurst, David [1 ]
Begley, Paul [1 ,3 ]
Brown, Marie [1 ,3 ]
Zelena, Eva [1 ]
Vaughan, Andrew A. [1 ]
Halsall, Antony [1 ]
Harding, Nadine [1 ]
Knowles, Joshua D.
Francis-McIntyre, Sue [1 ]
Tseng, Andy [1 ]
Ellis, David I. [1 ]
O'Hagan, Steve [1 ]
Aarons, Gill
Benjamin, Boben
Chew-Graham, Stephen
Moseley, Carly
Potter, Paula
Winder, Catherine L. [1 ,2 ]
Potts, Catherine
Thornton, Paula
McWhirter, Catriona
Zubair, Mohammed
Pan, Martin
Burns, Alistair
Cruickshank, J. Kennedy
Jayson, Gordon C.
Purandare, Nitin
Wu, Frederick C. W.
Finn, Joe D.
Haselden, John N.
Nicholls, Andrew W.
Wilson, Ian D.
Goodacre, Royston [1 ,2 ]
Kell, Douglas B. [1 ,2 ]
机构
[1] Univ Manchester, Fac Engn & Phys Sci, Sch Chem, Manchester Inst Biotechnol, Manchester M1 7DN, Lancs, England
[2] Univ Manchester, Fac Engn & Phys Sci, Manchester Ctr Integrat Syst Biol, Manchester Inst Biotechnol, Manchester M1 7DN, Lancs, England
[3] Univ Manchester, Fac Med & Human Sci, Ctr Endocrinol & Diabet, Inst Human Dev, Manchester M1 7DN, Lancs, England
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Human serum; Metabolic phenotyping; UK population; Mass spectrometry; Clinical biochemistry; MINIMUM REPORTING STANDARDS; SYSTEMS BIOLOGY; LARGE-SCALE; GAS-CHROMATOGRAPHY; DRUG DISCOVERY; RECONSTRUCTION; ASSOCIATION; BIOMARKERS; PROFILES; PATHWAYS;
D O I
10.1007/s11306-014-0707-1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Phenotyping of 1,200 'healthy' adults from the UK has been performed through the investigation of diverse classes of hydrophilic and lipophilic metabolites present in serum by applying a series of chromatography-mass spectrometry platforms. These data were made robust to instrumental drift by numerical correction; this was prerequisite to allow detection of subtle metabolic differences. The variation in observed metabolite relative concentrations between the 1,200 subjects ranged from less than 5 % to more than 200 %. Variations in metabolites could be related to differences in gender, age, BMI, blood pressure, and smoking. Investigations suggest that a sample size of 600 subjects is both necessary and sufficient for robust analysis of these data. Overall, this is a large scale and non-targeted chromatographic MS-based metabolomics study, using samples from over 1,000 individuals, to provide a comprehensive measurement of their serum metabolomes. This work provides an important baseline or reference dataset for understanding the 'normal' relative concentrations and variation in the human serum metabolome. These may be related to our increasing knowledge of the human metabolic network map. Information on the Husermet study is available at http://www.husermet.org/. Importantly, all of the data are made freely available at MetaboLights (http://www.ebi.ac.uk/metabolights/).
引用
收藏
页码:9 / 26
页数:18
相关论文
共 68 条
  • [1] Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises
    Bachi, Angela
    Dalle-Donne, Isabella
    Scaloni, Andrea
    [J]. CHEMICAL REVIEWS, 2013, 113 (01) : 596 - 698
  • [2] Feasibility of Identifying Pancreatic Cancer Based on Serum Metabolomics
    Bathe, Oliver F.
    Shaykhutdinov, Rustem
    Kopciuk, Karen
    Weljie, Aalim M.
    Mckay, Andrew
    Sutherland, Francis R.
    Dixon, Elijah
    Dunse, Nicole
    Sotiropoulos, Dina
    Vogel, Hans J.
    [J]. CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2011, 20 (01) : 140 - 147
  • [3] Development and Performance of a Gas Chromatography-Time-of-Flight Mass Spectrometry Analysis for Large-Scale Nontargeted Metabolomic Studies of Human Serum
    Begley, Paul
    Francis-McIntyre, Sue
    Dunn, Warwick B.
    Broadhurst, David I.
    Halsall, Antony
    Tseng, Andy
    Knowles, Joshua
    Goodacre, Royston
    Kell, Douglas B.
    [J]. ANALYTICAL CHEMISTRY, 2009, 81 (16) : 7038 - 7046
  • [4] The Human Urine Metabolome
    Bouatra, Souhaila
    Aziat, Farid
    Mandal, Rupasri
    Guo, An Chi
    Wilson, Michael R.
    Knox, Craig
    Bjorndahl, Trent C.
    Krishnamurthy, Ramanarayan
    Saleem, Fozia
    Liu, Philip
    Dame, Zerihun T.
    Poelzer, Jenna
    Huynh, Jessica
    Yallou, Faizath S.
    Psychogios, Nick
    Dong, Edison
    Bogumil, Ralf
    Roehring, Cornelia
    Wishart, David S.
    [J]. PLOS ONE, 2013, 8 (09):
  • [5] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [6] Statistical strategies for avoiding false discoveries in metabolomics and related experiments
    Broadhurst, David I.
    Kell, Douglas B.
    [J]. METABOLOMICS, 2006, 2 (04) : 171 - 196
  • [7] Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics
    Brown, M.
    Dunn, W. B.
    Dobson, P.
    Patel, Y.
    Winder, C. L.
    Francis-McIntyre, S.
    Begley, P.
    Carroll, K.
    Broadhurst, D.
    Tseng, A.
    Swainston, N.
    Spasic, I.
    Goodacre, R.
    Kell, D. B.
    [J]. ANALYST, 2009, 134 (07) : 1322 - 1332
  • [8] Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets
    Brown, Marie
    Wedge, David C.
    Goodacre, Royston
    Kell, Douglas B.
    Baker, Philip N.
    Kenny, Louise C.
    Mamas, Mamas A.
    Neyses, Ludwig
    Dunn, Warwick B.
    [J]. BIOINFORMATICS, 2011, 27 (08) : 1108 - 1112
  • [9] Biochemistry and molecular cell biology of diabetic complications
    Brownlee, M
    [J]. NATURE, 2001, 414 (6865) : 813 - 820
  • [10] Power failure: why small sample size undermines the reliability of neuroscience
    Button, Katherine S.
    Ioannidis, John P. A.
    Mokrysz, Claire
    Nosek, Brian A.
    Flint, Jonathan
    Robinson, Emma S. J.
    Munafo, Marcus R.
    [J]. NATURE REVIEWS NEUROSCIENCE, 2013, 14 (05) : 365 - 376