Asymptotic formulas for M2-ranks of partitions without repeated odd parts

被引:2
作者
Mao, Renrong [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotics; M-2-rank; Partitions without repeated odd parts; Circle Method; DYSONS CRANK; SYMMETRIES;
D O I
10.1016/j.jnt.2016.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, K. Bringmann, Dousse and Mertens established asymptotic formulas for ranks and cranks of partitions which were first conjectured by Dyson. Motivated by their works, we prove asymptotic formulas for M-2-ranks of partitions without repeated odd parts. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:324 / 343
页数:20
相关论文
共 20 条
[1]   DYSONS CRANK OF A PARTITION [J].
ANDREWS, GE ;
GARVAN, FG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 18 (02) :167-171
[2]   On the Distribution of the spt -Crank [J].
Andrews, George E. ;
Dyson, Freeman J. ;
Rhoades, Robert C. .
MATHEMATICS, 2013, 1 (03) :76-88
[3]  
Arken G., 1985, MATH METHODS PHYS, P610
[4]  
Atkin A.O.L., 1954, Proc. London Math. Soc. 3, V4, P84, DOI DOI 10.1112/PLMS/S3-4.1.84
[5]   Some observations on Dyson's new symmetries of partitions [J].
Berkovich, A ;
Garvan, FG .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (01) :61-93
[6]  
Bringmann K, 2008, J AM MATH SOC, V21, P1085
[7]   ON DYSON'S CRANK CONJECTURE AND THE UNIFORM ASYMPTOTIC BEHAVIOR OF CERTAIN INVERSE THETA FUNCTIONS [J].
Bringmann, Kathrin ;
Dousse, Jehanne .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (05) :3141-3155
[8]   Pairs of partitions without repeated odd parts [J].
Chan, Song Heng ;
Mao, Renrong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) :408-415
[9]   Asymptotic formulae for partition ranks [J].
Dousse, Jehanne ;
Mertens, Michael H. .
ACTA ARITHMETICA, 2015, 168 (01) :83-100
[10]   MAPPINGS AND SYMMETRIES OF PARTITIONS [J].
DYSON, FJ .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 51 (02) :169-180