Policy gradient fuzzy reinforcement learning

被引:0
作者
Wang, XN [1 ]
Xu, X [1 ]
He, HG [1 ]
机构
[1] Natl Univ Def Technol, Inst Automat, Changsha 410073, Peoples R China
来源
PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7 | 2004年
关键词
reinforcement learning; fuzzy control; policy gradient; gradient estimate;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new approach for tuning conclusions of fuzzy rules based on reinforcement learning. Unlike the most of existing fuzzy reinforcement learning algorithms which are based on value function, while our approach called policy gradient fuzzy reinforcement learning (PGFRL) bases on gradient estimate. In PGFRL, The algorithm GPOMDP is employed to estimate the performance gradient with respect to the parameters of fuzzy rules. In our work we prove the convergence of fuzzy rules' parameters to a local optimum given necessary conditions. The experiment results show the effectiveness of PGFRL.
引用
收藏
页码:992 / 995
页数:4
相关论文
共 50 条
[21]   Policy Gradient Reinforcement Learning for I/O Reordering on Storage Servers [J].
Dheenadayalan, Kumar ;
Srinivasaraghavan, Gopalakrishnan ;
Muralidhara, V. N. .
NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 :849-859
[22]   A Collaborative Multiagent Reinforcement Learning Method Based on Policy Gradient Potential [J].
Zhang, Zhen ;
Ong, Yew-Soon ;
Wang, Dongqing ;
Xue, Binqiang .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (02) :1015-1027
[23]   Performance Improvement of Linux CPU Scheduler Using Policy Gradient Reinforcement Learning for Android Smartphones [J].
Han, Junyeong ;
Lee, Sungyoung .
IEEE ACCESS, 2020, 8 :11031-11045
[24]   Decentralized multi-task reinforcement learning policy gradient method with momentum over networks [J].
Shi Junru ;
Wang Qiong ;
Liu Muhua ;
Ji Zhihang ;
Zheng Ruijuan ;
Wu Qingtao .
APPLIED INTELLIGENCE, 2023, 53 (09) :10365-10379
[25]   Decentralized multi-task reinforcement learning policy gradient method with momentum over networks [J].
Shi Junru ;
Wang Qiong ;
Liu Muhua ;
Ji Zhihang ;
Zheng Ruijuan ;
Wu Qingtao .
Applied Intelligence, 2023, 53 :10365-10379
[26]   Model gradient: unified model and policy learning in model-based reinforcement learning [J].
Jia, Chengxing ;
Zhang, Fuxiang ;
Xu, Tian ;
Pang, Jing-Cheng ;
Zhang, Zongzhang ;
Yu, Yang .
FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (04)
[27]   Model gradient: unified model and policy learning in model-based reinforcement learning [J].
Chengxing Jia ;
Fuxiang Zhang ;
Tian Xu ;
Jing-Cheng Pang ;
Zongzhang Zhang ;
Yang Yu .
Frontiers of Computer Science, 2024, 18
[28]   Fuzzy reinforcement learning [J].
Andrecut, M ;
Ali, MK .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (05) :659-674
[29]   Reinforced knowledge distillation: Multi-class imbalanced classifier based on policy gradient reinforcement learning [J].
Fan, Saite ;
Zhang, Xinmin ;
Song, Zhihuan .
NEUROCOMPUTING, 2021, 463 :422-436
[30]   Policy-Gradient-Based Reinforcement Learning for Maximizing Operator's Profit in Open-RAN [J].
Sharara, Mahdi ;
Hoteit, Sahar ;
Carlinet, Yannick ;
Masucci, Antonia Maria ;
Perrot, Nancy .
JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2025, 33 (04)