RANK AND INERTIA OF SUBMATRICES OF THE MOORE-PENROSE INVERSE OF A HERMITIAN MATRIX

被引:0
作者
Tian, Yongge [1 ]
机构
[1] Cent Univ Finance & Econ, China Econ & Management Acad, Beijing 100081, Peoples R China
关键词
Hermitian matrix; Partitioned matrix; Moore-Penrose inverse; Rank; Inertia;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Closed-form formulas are derived for the rank and inertia of submatrices of the Moore-Penrose inverse of a Hermitian matrix. A variety of consequences on the nonsingularity, nullity and definiteness of the submatrices are also presented.
引用
收藏
页码:226 / 240
页数:15
相关论文
共 50 条
  • [21] On the algebraic structure of the Moore-Penrose inverse of a polynomial matrix
    Kafetzis, Ioannis S.
    Karampetakis, Nicholas P.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2022, 39 (02) : 443 - 459
  • [22] Moore-Penrose inverse of a Gram matrix and its nonnegativity
    Kurmayya, T.
    Sivakumar, K. C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 139 (01) : 201 - 207
  • [23] Moore-Penrose Inverse of a Gram Matrix and Its Nonnegativity
    T. Kurmayya
    K. C. Sivakumar
    Journal of Optimization Theory and Applications, 2008, 139 : 201 - 207
  • [24] Generalization of the Moore-Penrose inverse
    Stojanovic, Katarina S.
    Mosic, Dijana
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
  • [25] A note on Moore-Penrose inverse of Laplacian matrix of graphs
    Nunez, Luis Carlos Picon
    Candezano, M. A. C.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (06)
  • [26] Extending the Moore-Penrose Inverse
    Dincic, Nebojsa C.
    FILOMAT, 2016, 30 (02) : 419 - 428
  • [27] Improved Gradient Neural Networks for Solving Moore-Penrose Inverse of Full-Rank Matrix
    Lv, Xuanjiao
    Xiao, Lin
    Tan, Zhiguo
    Yang, Zhi
    Yuan, Junying
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1993 - 2005
  • [28] Moore-Penrose inverse of the incidence matrix of a distance regular graph
    Azimi, A.
    Bapat, R. B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 551 : 92 - 103
  • [29] WHEN DOES THE MOORE-PENROSE INVERSE FLIP?
    Hartwig, R. E.
    Patricio, P.
    OPERATORS AND MATRICES, 2012, 6 (01): : 181 - 192
  • [30] An Efficient Matrix Iterative Method for Computing Moore-Penrose Inverse
    Kaur, Manpreet
    Kansal, Munish
    Kumar, Sanjeev
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)