Thermodynamic optimization of lithium chloride-potassium chloride-zinc chloride and lithium chloride-potassium chloride-magnesium chloride for thermal energy storage

被引:13
作者
Kang, Zeyang [1 ]
Shi, Yaohui [1 ]
Liu, Hui [1 ]
Liu, Xiangyang [1 ]
He, Maogang [1 ]
机构
[1] Xi An Jiao Tong Univ, Key Lab Thermofluid Sci & Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Concentrated solar power; Thermal energy storage; Thermophysical property; Phase diagram; Eutectic mixture; HEAT-TRANSFER FLUIDS; MOLTEN-SALTS; SYSTEMS; PLANTS;
D O I
10.1016/j.est.2022.105028
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrical generators transducing and concentrating solar power to heat and then to electricity require a material with good thermophysical properties to store heat when there is no sunlight. Here, LiCl-KCl-ZnCl2 and LiCl-KClMgCl2 were observed for their capacity to store energy by the change in sensible heat content as a function of temperature. The ternary phase diagrams of the two salts were predicted using a thermodynamic model. Three eutectic points for LiCl-KCl-ZnCl2 and four eutectic points for LiCl-KCl-MgCl2 were predicted and experimentally verified. The heat capacity and thermal stability of the seven eutectic mixtures were measured to evaluate their heat storage capacity and operating temperature range. LiCl-KCl-ZnCl2 (13.86 % mol-40.63 % mol-45.51 % mol) and LiCl-KCl-MgCl2 (47.29 % mol-44.33 % mol-8.38 % mol) were found to be the best choices for heat storage materials, which have low melting points of 451.8 K and 612.8 K, large heat capacity of 1.25 J/g center dot K and 1.80 J/ g center dot K, and wide operating temperature range from room temperature to higher than 823 K, respectively.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Experimental investigation and calculation of the phase diagram of the binary system (NaNO3 + TlNO3) [J].
Abdessattar, Abdelkader ;
Hellali, Dalila ;
Boa, David ;
Zamali, Hmida .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 651 :773-778
[2]   Energy storage technologies and real life applications - A state of the art review [J].
Aneke, Mathew ;
Wang, Meihong .
APPLIED ENERGY, 2016, 179 :350-377
[3]  
[Anonymous], 2012, US Dept. of Energy
[4]   FactSage thermochemical software and databases, 2010-2016 [J].
Bale, C. W. ;
Belisle, E. ;
Chartrand, P. ;
Decterov, S. A. ;
Eriksson, G. ;
Gheribi, A. E. ;
Hack, K. ;
Jung, I. -H. ;
Kang, Y. -B. ;
Melancon, J. ;
Pelton, A. D. ;
Petersen, S. ;
Robelin, C. ;
Sangster, J. ;
Spencer, P. ;
Van Ende, M-A. .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2016, 54 :35-53
[5]  
Barin Ihsan., 2013, Thermochemical properties of inorganic substances: supplement
[6]   The LiCl-KCl binary system [J].
Basin, A. S. ;
Kaplun, A. B. ;
Meshalkin, A. B. ;
Uvarov, N. F. .
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2008, 53 (09) :1509-1511
[7]   Thermal energy storage for solar-powered organic Rankine cycle engines [J].
Casati, E. ;
Galli, A. ;
Colonna, P. .
SOLAR ENERGY, 2013, 96 :205-219
[8]  
Dean J. A., LANGES HDB CHEM
[9]   Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid [J].
Delise, T. ;
Tizzoni, A. C. ;
Menale, C. ;
Telling, M. T. F. ;
Bubbico, R. ;
Crescenzi, T. ;
Corsaro, N. ;
Sau, S. ;
Licoccia, S. .
APPLIED ENERGY, 2020, 265
[10]   Modeling the Total Ternary Phase Diagram of NaNO3-KNO3-NaNO2 Using the Binary Subsystems Data [J].
Delise, T. ;
Tizzoni, A. C. ;
Votyakov, E. V. ;
Turchetti, L. ;
Corsaro, N. ;
Sau, S. ;
Licoccia, S. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2020, 41 (01)