Tuning the hydrogen evolution activity of MS2 (M = Mo or Nb) monolayers by strain engineering

被引:65
作者
Chen, Xiaobo [1 ]
Wang, Guangjin [2 ]
机构
[1] Jinan Univ, Dept Phys, Guangzhou Key Lab Vacuum Coating Technol & New En, Siyuan Lab, Guangzhou 510632, Guangdong, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSITION-METAL DICHALCOGENIDES; ELECTRONIC-PROPERTIES; ENERGY; INTERCALATION; NANOPARTICLES; CATALYSTS; GRAPHENE; H-2;
D O I
10.1039/c5cp06475a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strain engineering is an effective strategy to tune the electronic, magnetic and optical properties of atomically thin materials like graphene and monolayer transition-metal dichalcogenides (m-TMDs). Using first-principles calculations, we show that strain is also effective for tuning the catalytic activity of m-MS2 (M = Mo or Nb) towards the hydrogen evolution reaction (HER), which is essential for electrochemical hydrogen generation from water splitting. A wide strain range covering both compressive (0-6%) and tensile (0-10%) regions is considered. It is found that biaxial tensile strain can enhance the HER activity more effectively than uniaxial tensile strain, while compressive strain deteriorates the HER activity. Compared with monolayer 1T-NbS2, monolayers 1T-MoS2 and 1H-NbS2 exhibit better strain tunability towards their HER activities since more active sites can be induced with increasing strain. In contrast, monolayer 1H-MoS2 is catalytically inert in the considered strain range because H adsorption is too weak. We demonstrate that tensile strain can lead to decrease of the adiabatic proton affinity but simultaneously a larger magnitude of increase of the adiabatic electron affinity, thus enhancing the catalytic activity. Electronic structure calculations show that tensile strain can activate the relatively inert inner valence electrons and enlarge the d-band exchange splitting, both of which induce destabilization of the system and enhancement of catalytic activity.
引用
收藏
页码:9388 / 9395
页数:8
相关论文
共 53 条
[1]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[2]   Determination of the Electrochemically Active Surface Area of Metal-Oxide Supported Platinum Catalyst [J].
Binninger, T. ;
Fabbri, E. ;
Koetz, R. ;
Schmidt, T. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :H121-H128
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Hydrogen evolution on nano-particulate transition metal sulfides [J].
Bonde, Jacob ;
Moses, Poul G. ;
Jaramillo, Thomas F. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
FARADAY DISCUSSIONS, 2008, 140 :219-231
[5]   Local Strain Engineering in Atomically Thin MoS2 [J].
Castellanos-Gomez, Andres ;
Roldan, Rafael ;
Cappelluti, Emmanuele ;
Buscema, Michele ;
Guinea, Francisco ;
van der Zant, Herre S. J. ;
Steele, Gary A. .
NANO LETTERS, 2013, 13 (11) :5361-5366
[6]   Origin of hydrogen evolution activity on MS2 (M = Mo or Nb) monolayers [J].
Chen, Xiaobo ;
Gu, Yu ;
Tao, Guohua ;
Pei, Yanli ;
Wang, Guangjin ;
Cui, Ni .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (37) :18898-18905
[7]   Critical electronic structures controlling phase transitions induced by lithium ion intercalation in molybdenum disulphide [J].
Chen XiaoBo ;
Chen ZhenLian ;
Li Jun .
CHINESE SCIENCE BULLETIN, 2013, 58 (14) :1632-1641
[8]   Electrochemical cycling reversibility of LiMoS2 using first-principles calculations [J].
Chen, Xiaobo ;
He, Jinhua ;
Srivastava, Deepak ;
Li, Jun .
APPLIED PHYSICS LETTERS, 2012, 100 (26)
[9]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[10]   Controlling Energy Gap of Bilayer Graphene by Strain [J].
Choi, Seon-Myeong ;
Jhi, Seung-Hoon ;
Son, Young-Woo .
NANO LETTERS, 2010, 10 (09) :3486-3489