Minimal-work principle and its limits for classical systems

被引:20
作者
Allahverdyan, A. E.
Nieuwenhuizen, Th. M.
机构
[1] Yerevan Phys Inst, Yerevan 375036, Armenia
[2] Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 05期
关键词
D O I
10.1103/PhysRevE.75.051124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The minimal-work principle asserts that work done on a thermally isolated equilibrium system is minimal for the slowest (adiabatic) realization of a given process. This principle, one of the formulations of the second law, is operationally well defined for any finite (few particle) Hamiltonian system. Within classical Hamiltonian mechanics, we show that the principle is valid for a system of which the observable of work is an ergodic function. For nonergodic systems the principle may or may not hold, depending on additional conditions. Examples displaying the limits of the principle are presented and their direct experimental realizations are discussed.
引用
收藏
页数:5
相关论文
共 41 条
  • [1] Minimal work principle: Proof and counterexamples
    Allahverdyan, AE
    Nieuwenhuizen, TM
    [J]. PHYSICAL REVIEW E, 2005, 71 (04):
  • [2] Fluctuations of work from quantum subensembles: The case against quantum work-fluctuation theorems
    Allahverdyan, AE
    Nieuwenhuizen, TM
    [J]. PHYSICAL REVIEW E, 2005, 71 (06):
  • [3] Allahverdyan AE, 2004, J MOD OPTIC, V51, P2703, DOI [10.1080/09500340408231829, 10.1080/09500340412331286694]
  • [4] Curie-Weiss model of the quantum measurement process
    Allahverdyan, AE
    Balian, R
    Nieuwenhuizen, TM
    [J]. EUROPHYSICS LETTERS, 2003, 61 (04): : 452 - 458
  • [5] [Anonymous], 1992, MICROPHYSICS MACROPH
  • [6] Balzani V., 2003, Molecular Devices and Machines, a Journey into the Nanoworld
  • [7] ALTERNATIVE DERIVATION OF CLASSICAL 2ND LAW OF THERMODYNAMICS
    BASSETT, IM
    [J]. PHYSICAL REVIEW A, 1978, 18 (05): : 2356 - 2360
  • [8] Becker R., 1967, THEORY HEAT
  • [9] BERDICHEVSKY VL, 1997, THERMODYNAMICS CHAOS
  • [10] ON MOTION OF CHARGED PARTICLES IN A SLIGHTLY DAMPED SINUSOIDAL POTENTIAL WAVE
    BEST, RWB
    [J]. PHYSICA, 1968, 40 (02): : 182 - &