Nondestructive imaging of atomically thin nanostructures buried in silicon

被引:63
作者
Gramse, Georg [1 ]
Kolker, Alexander [2 ,3 ]
Lim, Tingbin [2 ]
Stock, Taylor J. Z. [2 ]
Solanki, Hari [2 ]
Schofield, Steven R. [2 ,4 ]
Brinciotti, Enrico [5 ]
Aeppli, Gabriel [6 ,7 ,8 ,9 ]
Kienberger, Ferry [5 ]
Curson, Neil J. [2 ,3 ]
机构
[1] Johannes Kepler Univ Linz, Inst Biophys, Gruberstr 40, A-4020 Linz, Austria
[2] UCL, London Ctr Nanotechnol, 17-19 Gordon St, London WC1H 0AH, England
[3] UCL, Dept Elect & Elect Engn, Torrington Pl, London WC1E 7JE, England
[4] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[5] Keysight Technol Inc, Keysight Labs, Gruberstr 40, A-4020 Linz, Austria
[6] ETH, Dept Phys, CH-8093 Zurich, Switzerland
[7] Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland
[8] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[9] Bio Nano Consulting, Gridiron Bldg,One Pancras Sq, London N1C 4AG, England
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
DELTA-LAYERS; FIELD; FABRICATION; MICROSCOPY;
D O I
10.1126/sciadv.1602586
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) tomicrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope-based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for un-patterned phosphorus delta layers containing similar to 10(13) P atoms. The imaging resolutionwas 37 +/- 1nmin lateral and 4 +/- 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Nanometer-scale lithography on Si(001) using adsorbed H as an atomic layer resist [J].
Adams, DP ;
Mayer, TM ;
Swartzentruber, BS .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (03) :1642-1649
[2]   Depth-Sensitive Subsurface Imaging of Polymer Nanocomposites Using Second Harmonic Kelvin Probe Force Microscopy [J].
Alejandro Castaneda-Uribe, Octavio ;
Reifenberger, Ronald ;
Raman, Arvind ;
Avila, Alba .
ACS NANO, 2015, 9 (03) :2938-2947
[3]   Microwave Near-Field Imaging of Two-Dimensional Semiconductors [J].
Berweger, Samuel ;
Weber, Joel C. ;
John, Jimmy ;
Velazquez, Jesus M. ;
Pieterick, Adam ;
Sanford, Norman A. ;
Davydov, Albert V. ;
Brunschwig, Bruce ;
Lewis, Nathan S. ;
Wallis, Thomas M. ;
Kabos, Pavel .
NANO LETTERS, 2015, 15 (02) :1122-1127
[4]   Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy [J].
Brinciotti, Enrico ;
Gramse, Georg ;
Hommel, Soeren ;
Schweinboeck, Thomas ;
Altes, Andreas ;
Fenner, Matthias A. ;
Smoliner, Juergen ;
Kasper, Manuel ;
Badino, Giorgio ;
Tuca, Silviu-Sorin ;
Kienberger, Ferry .
NANOSCALE, 2015, 7 (35) :14715-14722
[5]   Quantum dot spectroscopy using a single phosphorus donor [J].
Buech, Holger ;
Fuechsle, Martin ;
Baker, William ;
House, Matthew G. ;
Simmons, Michelle Y. .
PHYSICAL REVIEW B, 2015, 92 (23)
[6]   Scanning capacitance microscopy registration of buried atomic-precision donor devices [J].
Bussmann, E. ;
Rudolph, M. ;
Subramania, G. S. ;
Misra, S. ;
Carr, S. M. ;
Langlois, E. ;
Dominguez, J. ;
Pluym, T. ;
Lilly, M. P. ;
Carroll, M. S. .
NANOTECHNOLOGY, 2015, 26 (08)
[7]   Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods [J].
Cadena, Maria J. ;
Misiego, Rocio ;
Smith, Kyle C. ;
Avila, Alba ;
Pipes, Byron ;
Reifenberger, Ron ;
Raman, Arvind .
NANOTECHNOLOGY, 2013, 24 (13)
[8]   The effect of surface proximity on electron transport through ultra-shallow δ-doped layers in silicon [J].
Clarke, W. R. ;
Zhou, X. J. ;
Fuhrer, A. ;
Reusch, T. C. G. ;
Simmons, M. Y. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05) :1566-1568
[9]   Disentangling time in a near-field approach to scanning probe microscopy [J].
Farina, Marco ;
Lucesoli, Agnese ;
Pietrangelo, Tiziana ;
di Donato, Andrea ;
Fabiani, Silvia ;
Venanzoni, Giuseppe ;
Mencarelli, Davide ;
Rozzi, Tullio ;
Morini, Antonio .
NANOSCALE, 2011, 3 (09) :3589-3593
[10]   Quantifying the dielectric constant of thick insulators using electrostatic force microscopy [J].
Fumagalli, L. ;
Gramse, G. ;
Esteban-Ferrer, D. ;
Edwards, M. A. ;
Gomila, G. .
APPLIED PHYSICS LETTERS, 2010, 96 (18)