Optical Network Traffic Prediction Based on Graph Convolutional Neural Networks

被引:0
作者
Gui, Yihan [1 ]
Wang, Danshi [1 ]
Guan, Luyao [1 ]
Zhang, Min [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing, Peoples R China
来源
2020 OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2020) | 2020年
基金
中国国家自然科学基金;
关键词
Traffic prediction; elastics optical networks; spatial-temporal dependence; graph convolutional network;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Understanding traffic patterns in largescale networks is of great importance for optical networks to implement intelligent management and adaptive adjustment. However, accurate traffic prediction in flexible optical networks is challenging because of the temporal and spatial autocorrelation of traffic. Spatial-temporal graph modeling is an effective approach to analyze the spatial relations and temporal trends of traffic in a system. We propose an efficient graph-based neural network named as the graph convolutional network with the gated recurrent unit (GCN-GRU). Based on a real-world optical networking traffic dataset, 98% accuracy for traffic prediction is achieved by GCN-GRU.
引用
收藏
页数:3
相关论文
共 50 条
[41]   Capturing spatial-temporal correlations with Attention based Graph Convolutional Network for network traffic prediction [J].
Guo, Yingya ;
Peng, Yufei ;
Hao, Run ;
Tang, Xiang .
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2023, 220
[42]   Dynamic Spatio-Temporal Graph Fusion Convolutional Network for Urban Traffic Prediction [J].
Ma, Haodong ;
Qin, Xizhong ;
Jia, Yuan ;
Zhou, Junwei .
APPLIED SCIENCES-BASEL, 2023, 13 (16)
[43]   SSGCRTN: a space-specific graph convolutional recurrent transformer network for traffic prediction [J].
Yang, Shiyu ;
Wu, Qunyong ;
Wang, Yuhang ;
Lin, Tingyu .
APPLIED INTELLIGENCE, 2024, 54 (22) :11978-11994
[44]   Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks [J].
Acun, Fatih ;
Kalkan, Sinan ;
Gol, Ebru Aydin .
2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
[45]   A Freeway Traffic Flow Prediction Model Based on a Generalized Dynamic Spatio-Temporal Graph Convolutional Network [J].
Gan, Rui ;
An, Bocheng ;
Li, Linheng ;
Qu, Xu ;
Ran, Bin .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) :13682-13693
[46]   Multi-View SpatialTemporal Graph Convolutional Network for Traffic Prediction [J].
Wei, Shuqing ;
Feng, Siyuan ;
Yang, Hai .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) :9572-9586
[47]   Interactive dynamic diffusion graph convolutional network for traffic flow prediction [J].
Zhang, Shuai ;
Yu, Wangzhi ;
Zhang, Wenyu .
INFORMATION SCIENCES, 2024, 677
[48]   Spatial-Temporal Dilated and Graph Convolutional Network for traffic prediction [J].
Yang, Guoliang ;
Wen, Junlin ;
Yu, Dinglin ;
Zhang, Shuo .
2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, :802-806
[49]   Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark and Solution [J].
Li, Fuxian ;
Feng, Jie ;
Yan, Huan ;
Jin, Guangyin ;
Yang, Fan ;
Sun, Funing ;
Jin, Depeng ;
Li, Yong .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (01)
[50]   Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction [J].
Lv, Mingqi ;
Hong, Zhaoxiong ;
Chen, Ling ;
Chen, Tieming ;
Zhu, Tiantian ;
Ji, Shouling .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) :3337-3348