Optical Network Traffic Prediction Based on Graph Convolutional Neural Networks

被引:0
|
作者
Gui, Yihan [1 ]
Wang, Danshi [1 ]
Guan, Luyao [1 ]
Zhang, Min [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing, Peoples R China
来源
2020 OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2020) | 2020年
基金
中国国家自然科学基金;
关键词
Traffic prediction; elastics optical networks; spatial-temporal dependence; graph convolutional network;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Understanding traffic patterns in largescale networks is of great importance for optical networks to implement intelligent management and adaptive adjustment. However, accurate traffic prediction in flexible optical networks is challenging because of the temporal and spatial autocorrelation of traffic. Spatial-temporal graph modeling is an effective approach to analyze the spatial relations and temporal trends of traffic in a system. We propose an efficient graph-based neural network named as the graph convolutional network with the gated recurrent unit (GCN-GRU). Based on a real-world optical networking traffic dataset, 98% accuracy for traffic prediction is achieved by GCN-GRU.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] A Network Traffic Prediction Model Based on Layered Training Graph Convolutional Network
    Li, Yulian
    Su, Yang
    IEEE ACCESS, 2025, 13 : 24398 - 24410
  • [2] Traffic Prediction in Optical Networks Using Graph Convolutional Generative Adversarial Networks
    Vinchoff, C.
    Chung, N.
    Gordon, T.
    Lyford, L.
    Aibin, M.
    2020 22ND INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2020), 2020,
  • [3] Traffic Message Channel Prediction Based on Graph Convolutional Network
    Li, Ning
    Jia, Shuangcheng
    Li, Qian
    IEEE ACCESS, 2021, 9 : 135423 - 135431
  • [4] Multi-graph fusion based graph convolutional networks for traffic prediction
    Hu, Na
    Zhang, Dafang
    Xie, Kun
    Liang, Wei
    Li, Kuanching
    Zomaya, Albert
    COMPUTER COMMUNICATIONS, 2023, 210 : 194 - 204
  • [5] TARGCN: temporal attention recurrent graph convolutional neural network for traffic prediction
    Yang, He
    Jiang, Cong
    Song, Yun
    Fan, Wendong
    Deng, Zelin
    Bai, Xinke
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 8179 - 8196
  • [6] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [7] Bayesian graph convolutional network for traffic prediction
    Fu, Jun
    Zhou, Wei
    Chen, Zhibo
    NEUROCOMPUTING, 2024, 582
  • [8] Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16137 - 16147
  • [9] Heterogeneous Modular Traffic Prediction Based on Multilayer Graph Convolutional Network
    Chang, Mengmeng
    Ding, Zhiming
    Zhao, Zilin
    Cai, Zhi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7805 - 7817
  • [10] Topological Graph Convolutional Network-Based Urban Traffic Flow and Density Prediction
    Qiu, Han
    Zheng, Qinkai
    Msahli, Mounira
    Memmi, Gerard
    Qiu, Meikang
    Lu, Jialiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4560 - 4569