An improved k-ω turbulence model for the simulations of the wind turbine wakes in a neutral atmospheric boundary layer flow

被引:19
|
作者
Bouras, Ioannis [1 ]
Ma, Lin [1 ]
Ingham, Derek [1 ]
Pourkashanian, Mohamed [1 ]
机构
[1] Univ Sheffield, Fac Engn, Energy 2050, Sheffield S10 2TN, S Yorkshire, England
关键词
LARGE-EDDY SIMULATION; EPSILON MODEL; CFD; TERRAIN;
D O I
10.1016/j.jweia.2018.06.013
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Correct prediction of the recovery of wind turbine wakes in terms of the wind velocity and turbulence downstream of the turbine is of paramount importance for the accurate simulations of turbine interactions, overall wind farm energy output and the impact to the facilities downstream of the wind farm. Conventional turbulence models often result in an unrealistic recovery of the wind velocity and turbulence downstream of the turbine. In this paper, a modified k - omega turbulence model has been proposed together with conditions for achieving a zero streamwise gradient for all the fluid flow variables in neutral atmospheric flows. The new model has been implemented in the simulation of the wakes of two different wind turbines and the commonly used actuator disk model has been employed to represent the turbine rotors. The model has been tested for different wind speeds and turbulence levels. The comparison of the computational results shows good agreement with the available experimental data, in both near and far wake regions for all the modeled wind turbines. A zero streamwise gradient has been maintained in the far wake region in terms of both wind speed and turbulence quantities.
引用
收藏
页码:358 / 368
页数:11
相关论文
共 50 条
  • [21] Numerical study on self-sustainable atmospheric boundary layer considering wind veering based on steady k-ε model
    Feng, Chengdong
    Gu, Ming
    WIND AND STRUCTURES, 2020, 30 (01) : 69 - 83
  • [22] The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms
    Doerenkaemper, Martin
    Witha, Bjoern
    Steinfeld, Gerald
    Heinemann, Detlev
    Kuehn, Martin
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2015, 144 : 146 - 153
  • [23] Modulation of Mean Wind and Turbulence in the Atmospheric Boundary Layer by Baroclinicity
    Momen, Mostafa
    Bou-Zeid, Elie
    Parlange, Marc B.
    Giometto, Marco
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2018, 75 (11) : 3797 - 3821
  • [24] A Comprehensive Modelling Approach for the Neutral Atmospheric Boundary Layer: Consistent Inflow Conditions, Wall Function and Turbulence Model
    Parente, Alessandro
    Gorle, Catherine
    van Beeck, Jeroen
    Benocci, Carlo
    BOUNDARY-LAYER METEOROLOGY, 2011, 140 (03) : 411 - 428
  • [25] Calibration method of the k-ω SST turbulence model for wind turbine performance prediction near stall condition
    Younoussi, Somaya
    Ettaouil, Abdeslem
    HELIYON, 2024, 10 (01)
  • [26] Numerical Simulation of Atmospheric Boundary Layer Turbulence in a Wind Tunnel Based on a Hybrid Method
    Chen, Zhaoqing
    Wei, Chao
    Chen, Zhuozhuo
    Wang, Shuang
    Tang, Lixiang
    ATMOSPHERE, 2022, 13 (12)
  • [27] Influence of atmospheric stability on wind-turbine wakes with a certain hub-height turbulence intensity
    Du, Bowen
    Ge, Mingwei
    Zeng, Chongji
    Cui, Guixiang
    Liu, Yongqian
    PHYSICS OF FLUIDS, 2021, 33 (05)
  • [28] Turbulence Modeling for the Stable Atmospheric Boundary Layer and Implications for Wind Energy
    Zhou, Bowen
    Chow, Fotini Katopodes
    FLOW TURBULENCE AND COMBUSTION, 2012, 88 (1-2) : 255 - 277
  • [29] Application of an improved k-ε turbulence model to predict the compressible viscous flow behavior in turbomachinery cascades
    Biswas, D
    Ishizuka, M
    Iwasaki, H
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 2000, 43 (01) : 12 - 21
  • [30] The effects of mean atmospheric forcings of the stable atmospheric boundary layer on wind turbine wake
    Bhaganagar, Kiran
    Debnath, Mithu
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2015, 7 (01)