Global stability for an special SEIR epidemic model with nonlinear incidence rates

被引:60
作者
Sun, Chengjun [1 ]
Lin, Yiping
Tang, Shoupeng
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Kunming Univ Sci & Technol, Dept Math, Kunming 650093, Yunnan, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2005.12.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A SEIR epidemic model with nonlinear incidence rates, constant recruitment and disease-caused death in epidemiology is considered. It is shown that the global dynamics is completely determined by the contact number R-0. If R-0 <= 1, the disease-free equilibrium is globally stable and the disease dies out. If R-0 > 1, the unique endemic equilibrium is globally stable in the interior of the feasible region by using the methods established in Butler GJ, Freedman HI, Waltman P. Uniformly persistent systems, Proc Am Math Soc 1986;96:425-30, and the disease persists at the endemic equilibrium. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:290 / 297
页数:8
相关论文
共 21 条
[1]  
[Anonymous], 1994, J DIFFERENTIAL EQUAT, DOI DOI 10.1006/JDEQ.1993.1097
[2]   UNIFORMLY PERSISTENT SYSTEMS [J].
BUTLER, G ;
FREEDMAN, HI ;
WALTMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) :425-430
[3]   PERSISTENCE IN DYNAMIC-SYSTEMS [J].
BUTLER, G ;
WALTMAN, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 63 (02) :255-263
[4]  
Freedman HI., 1994, J DYN DIFFER EQU, V6, P583, DOI DOI 10.1007/BF02218848
[5]  
GENIK L, 1998, CAN APPL MATH Q, V6, P5
[6]   Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity [J].
Greenhalgh, D .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 25 (02) :85-107
[7]  
Guckenheimer J., 2013, APPL MATH SCI, V42, DOI 10.1007/978-1-4612-1140-2
[8]  
HETHCOTE H W, 1976, Mathematical Biosciences, V28, P335, DOI 10.1016/0025-5564(76)90132-2
[9]   The mathematics of infectious diseases [J].
Hethcote, HW .
SIAM REVIEW, 2000, 42 (04) :599-653
[10]  
Hethcote HW, 1981, Differential Equations and Applications in Ecology, Epidemics and Population Problems, P65, DOI [10.1016/B978-0-12-148360-9.50011-1, 10.1016/B978-0-12-148360-9.X5001-X]