Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space

被引:3
作者
Belozerov, G., V [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
billiard; integrable billiard; integrable system; Liouville foliation; topological invariants; INTEGRABLE GEODESIC-FLOWS; FOMENKO-ZIESCHANG INVARIANTS; LIOUVILLE FOLIATIONS; HAMILTONIAN-SYSTEMS; BIFURCATIONS; SINGULARITIES; REALIZATION; FREEDOM; METRICS; TORUS;
D O I
10.1070/SM9588
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study billiards on compact connected domains in R-3 bounded by a finite number of confocal quadrics meeting in dihedral angles equal to pi/2. Billiards in such domains are integrable due to having three first integrals in involution inside the domain. We introduce two equivalence relations: combinatorial equivalence of billiard domains determined by the structure of their boundaries, and weak equivalence of the corresponding billiard systems on them. Billiard domains in R-3 are classified with respect to combinatorial equivalence, resulting in 35 pairwise nonequivalent classes. For each of these obtained classes, we look for the homeomorphism class of the nonsingular isoenergy 5-manifold, and we show this to be one of three types: either S-5, or S-1 x S-4, or S-2 x S-3. We obtain 24 classes of pairwise nonequivalent (with respect to weak equivalence) Liouville foliations of billiards on these domains restricted to a nonsingular energy level. We also define bifurcation atoms of three-dimensional tori corresponding to the arcs of the bifurcation diagram.
引用
收藏
页码:129 / 160
页数:32
相关论文
共 89 条
[1]   An integrable deformation of an ellipse of small eccentricity is an ellipse [J].
Avila, Artur ;
De Simoi, Jacopo ;
Kaloshin, Vadim .
ANNALS OF MATHEMATICS, 2016, 184 (02) :527-558
[2]   Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane [J].
Bialy, M. ;
Mironov, A. E. .
RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (02) :187-209
[3]   Angular billiard and algebraic Birkhoff conjecture [J].
Bialy, Misha ;
Mironov, Audrey E. .
ADVANCES IN MATHEMATICS, 2017, 313 :102-126
[4]  
Birkhoff G.D., 1927, DYNAM SYST, V9, P295
[5]  
Bolsinov A.V., 1999, INTEGRABLE HAMILTONI, V1, P444
[6]  
Bolsinov A. V., 1999, INTEGRABLE HAMILTONI, V2
[7]   The method of loop molecules and the topology of the Kovalevskaya top [J].
Bolsinov, AV ;
Richter, PH ;
Fomenko, AT .
SBORNIK MATHEMATICS, 2000, 191 (1-2) :151-188
[8]   Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry [J].
Bolsinov, AV ;
Matveev, VS ;
Fomenko, AT .
SBORNIK MATHEMATICS, 1998, 189 (9-10) :1441-1466
[9]   Bifurcations of Liouville tori in elliptical billiards [J].
Dragovic, V. ;
Radnovic, M. .
REGULAR & CHAOTIC DYNAMICS, 2009, 14 (4-5) :479-494
[10]  
Dragovic V., 2011, PONCELET PORISMS, DOI [10.1007/978-3-0348-0015-0, DOI 10.1007/978-3-0348-0015-0]