high purity Cu;
pulse magnetic field;
harmonic magnetic field;
microstructure;
sputtering target;
direct chill casting;
TG146;
1(+)1;
A;
D O I:
10.1007/s41230-021-0087-x
中图分类号:
TF [冶金工业];
学科分类号:
0806 ;
摘要:
The effects of two types of magnetic fields, namely harmonic magnetic field (HMF) and pulse magnetic field (PMF) on magnetic flux density, Lorentz force, temperature field, and microstructure of high purity Cu were studied by numerical simulation and experiment during electromagnetic direct chill casting. The magnetic field is induced by a magnetic generation system including an electromagnetic control system and a cylindrical crystallizer of 300 mm in diameter equipped with excitation coils. A comprehensive mathematical model for high purity Cu electromagnetic casting was established in finite element method. The distributions of magnetic flux density and Lorentz force generated by the two magnetic fields were acquired by simulation and experimental measurement. The microstructure of billets produced by HMF and PMF casting was compared. Results show that the magnetic flux density and penetrability of PMF are significantly higher than those of HMF, due to its faster variation in transient current and higher peak value of magnetic flux density. In addition, PMF drives a stronger Lorentz force and deeper penetration depth than HMF does, because HMF creates higher eddy current and reverse electromagnetic field which weakens the original electromagnetic field. The microstructure of a billet by HMF is composed of columnar structure regions and central fine grain regions. By contrast, the billet by PMF has a uniform microstructure which is characterized by ultra-refined and uniform grains because PMF drives a strong dual convection, which increases the uniformity of the temperature field, enhances the impact of the liquid flow on the edge of the liquid pool and reduces the curvature radius of liquid pool. Eventually, PMF shows a good prospect for industrialization.
机构:
Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 11016, Liaoning, Peoples R ChinaChinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
Jiang, Lin
Zhang, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
Jiangsu Normal Univ, Sch Mechatron Engn, Xuzhou 221116, Jiangsu, Peoples R ChinaChinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
Zhang, Liang
Liu, Zhi-Quan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 11016, Liaoning, Peoples R ChinaChinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
机构:
Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 11016, Liaoning, Peoples R ChinaChinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
Jiang, Lin
Zhang, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
Jiangsu Normal Univ, Sch Mechatron Engn, Xuzhou 221116, Jiangsu, Peoples R ChinaChinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
Zhang, Liang
Liu, Zhi-Quan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 11016, Liaoning, Peoples R ChinaChinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China