THE CAUCHY PROBLEM FOR SCHRODINGER FLOWS INTO KAHLER MANIFOLDS

被引:19
作者
Kenig, Carlos [1 ]
Lamm, Tobias [2 ]
Pollack, Daniel [3 ]
Staffilani, Gigliola [4 ]
Toro, Tatiana [3 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada
[3] Univ Washington, Seattle, WA 98195 USA
[4] MIT, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Schrodinger flows; Energy Estimates; Cauchy Problem; GLOBAL EXISTENCE; LOCAL EXISTENCE; MAPS; UNIQUENESS; DYNAMICS;
D O I
10.3934/dcds.2010.27.389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local well-posedness of the Schrodinger flow from R-n into a compact Kahler manifold N with initial data in Hs+1(R-n, N) for s >= [n/2] + 4.
引用
收藏
页码:389 / 439
页数:51
相关论文
共 44 条
[1]  
AMANN H, 1986, ARCH RATION MECH AN, V92, P153
[2]  
[Anonymous], 1996, LECT MATH ETH ZURICH
[3]  
[Anonymous], 1994, Diff. Int. Eqns.
[4]  
Aubin T., 1982, Monge-Ampere Equations, V252
[5]   Global existence and uniqueness of Schrodinger maps in dimensions d ≥ 4 [J].
Bejenaru, I. ;
Ionescu, A. D. ;
Kenig, C. E. .
ADVANCES IN MATHEMATICS, 2007, 215 (01) :263-291
[6]  
Bejenaru I, ARXIV08070265
[7]  
Bejenaru I, 2008, AM J MATH, V130, P1033
[8]   Global results for Schrodinger maps in dimensions n≥3 [J].
Bejenaru, Ioan .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (03) :451-477
[9]   INTERPOLATION BETWEEN H1B0 AND LPB1 [J].
BLASCO, O .
STUDIA MATHEMATICA, 1989, 92 (03) :205-210
[10]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601