Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter

被引:0
|
作者
Baltz, EA
Gondolo, P
机构
[1] KIPAC, Menlo Pk, CA 94025 USA
[2] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA
来源
关键词
supersymmetry phenomenology; cosmology of theories beyond the SM;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We explore the full parameter space of Minimal Supergravity (mSUGRA), allowing all four continuous parameters (the scalar mass m(0), the gaugino mass m(1/2), the trilinear coupling A(0), and the ratio of Higgs vacuum expectation values tan beta) to vary freely. We apply current accelerator constraints on sparticle and Higgs masses, and on the b --> sgamma branching ratio, and discuss the impact of the constraints on g(mu) - 2. To study dark matter, we apply the WMAP constraint on the cold dark matter density. We develop Markov Chain Monte Carlo (MCMC) techniques to explore the parameter regions consistent with WMAP, finding them to be considerably superior to previously used methods for exploring supersymmetric parameter spaces. Finally, we study the reach of current and future direct detection experiments in light of the WMAP constraint.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Stochastic Gradient Markov Chain Monte Carlo
    Nemeth, Christopher
    Fearnhead, Paul
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (533) : 433 - 450
  • [42] Markov Chain Monte Carlo and Databases (Abstract)
    Koch, Christoph
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2010, 2010, 6379 : 1 - 1
  • [43] Nonparametric Involutive Markov Chain Monte Carlo
    Mak, Carol
    Zaiser, Fabian
    Ong, Luke
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [44] A Quantum Parallel Markov Chain Monte Carlo
    Holbrook, Andrew J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1402 - 1415
  • [45] Hypothesis testing for Markov chain Monte Carlo
    Benjamin M. Gyori
    Daniel Paulin
    Statistics and Computing, 2016, 26 : 1281 - 1292
  • [46] Markov Chain Monte Carlo confidence intervals
    Atchade, Yves F.
    BERNOULLI, 2016, 22 (03) : 1808 - 1838
  • [47] Markov Chain Monte Carlo Random Testing
    Zhou, Bo
    Okamura, Hiroyuki
    Dohi, Tadashi
    ADVANCES IN COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2010, 6059 : 447 - 456
  • [48] An introduction to the Markov chain Monte Carlo method
    Wang, Wenlong
    AMERICAN JOURNAL OF PHYSICS, 2022, 90 (12) : 921 - 934
  • [49] MARGINAL MARKOV CHAIN MONTE CARLO METHODS
    van Dyk, David A.
    STATISTICA SINICA, 2010, 20 (04) : 1423 - 1454
  • [50] Analyzing Markov chain Monte Carlo output
    Vats, Dootika
    Robertson, Nathan
    Flegal, James M.
    Jones, Galin L.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2020, 12 (04):