Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter

被引:0
|
作者
Baltz, EA
Gondolo, P
机构
[1] KIPAC, Menlo Pk, CA 94025 USA
[2] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA
来源
关键词
supersymmetry phenomenology; cosmology of theories beyond the SM;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We explore the full parameter space of Minimal Supergravity (mSUGRA), allowing all four continuous parameters (the scalar mass m(0), the gaugino mass m(1/2), the trilinear coupling A(0), and the ratio of Higgs vacuum expectation values tan beta) to vary freely. We apply current accelerator constraints on sparticle and Higgs masses, and on the b --> sgamma branching ratio, and discuss the impact of the constraints on g(mu) - 2. To study dark matter, we apply the WMAP constraint on the cold dark matter density. We develop Markov Chain Monte Carlo (MCMC) techniques to explore the parameter regions consistent with WMAP, finding them to be considerably superior to previously used methods for exploring supersymmetric parameter spaces. Finally, we study the reach of current and future direct detection experiments in light of the WMAP constraint.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] MARKOV CHAIN SIMULATION FOR MULTILEVEL MONTE CARLO
    Jasra, Ajay
    Law, Kody J. H.
    Xu, Yaxian
    FOUNDATIONS OF DATA SCIENCE, 2021, 3 (01): : 27 - 47
  • [32] On the Markov Chain Monte Carlo (MCMC) method
    Rajeeva L. Karandikar
    Sadhana, 2006, 31 : 81 - 104
  • [33] Markov Chain Monte Carlo methods1. Simple Monte Carlo
    K B Athreya
    Mohan Delampady
    T Krishnan
    Resonance, 2003, 8 (4) : 17 - 26
  • [34] Markov Chain Monte Carlo in small worlds
    Guan, YT
    Fleissner, R
    Joyce, P
    Krone, SM
    STATISTICS AND COMPUTING, 2006, 16 (02) : 193 - 202
  • [35] MCMCpack: Markov Chain Monte Carlo in R
    Martin, Andrew D.
    Quinn, Kevin M.
    Park, Jong Hee
    JOURNAL OF STATISTICAL SOFTWARE, 2011, 42 (09): : 1 - 21
  • [36] Parallel Markov chain Monte Carlo simulations
    Ren, Ruichao
    Orkoulas, G.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (21):
  • [37] A Markov chain Monte Carlo approach to stereovision
    Sénégas, J
    COMPUTER VISION - ECCV 2002 PT III, 2002, 2352 : 97 - 111
  • [38] Optimal Markov chain Monte Carlo sampling
    Chen, Ting-Li
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05) : 341 - 348
  • [39] Stein Point Markov Chain Monte Carlo
    Chen, Wilson Ye
    Barp, Alessandro
    Briol, Francois-Xavier
    Gorham, Jackson
    Girolami, Mark
    Mackey, Lester
    Oates, Chris J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [40] The quantum complexity of Markov chain Monte Carlo
    Richter, Peter C.
    LOGIC AND THEORY OF ALGORITHMS, 2008, 5028 : 511 - 522