Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter

被引:0
|
作者
Baltz, EA
Gondolo, P
机构
[1] KIPAC, Menlo Pk, CA 94025 USA
[2] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA
来源
关键词
supersymmetry phenomenology; cosmology of theories beyond the SM;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We explore the full parameter space of Minimal Supergravity (mSUGRA), allowing all four continuous parameters (the scalar mass m(0), the gaugino mass m(1/2), the trilinear coupling A(0), and the ratio of Higgs vacuum expectation values tan beta) to vary freely. We apply current accelerator constraints on sparticle and Higgs masses, and on the b --> sgamma branching ratio, and discuss the impact of the constraints on g(mu) - 2. To study dark matter, we apply the WMAP constraint on the cold dark matter density. We develop Markov Chain Monte Carlo (MCMC) techniques to explore the parameter regions consistent with WMAP, finding them to be considerably superior to previously used methods for exploring supersymmetric parameter spaces. Finally, we study the reach of current and future direct detection experiments in light of the WMAP constraint.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Markov-chain Monte Carlo: Some practical implications of theoretical results
    Roberts, GO
    Rosenthal, JS
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01): : 5 - 20
  • [22] Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals
    South, L. F.
    Pettitt, A. N.
    Drovandi, C. C.
    BAYESIAN ANALYSIS, 2019, 14 (03): : 753 - 776
  • [23] On adaptive Markov chain Monte Carlo algorithms
    Atchadé, YF
    Rosenthal, JS
    BERNOULLI, 2005, 11 (05) : 815 - 828
  • [24] Convergence Diagnostics for Markov Chain Monte Carlo
    Roy, Vivekananda
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 7, 2020, 2020, 7 : 387 - 412
  • [25] Geometry and Dynamics for Markov Chain Monte Carlo
    Barp, Alessandro
    Briol, Francois-Xavier
    Kennedy, Anthony D.
    Girolami, Mark
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 5, 2018, 5 : 451 - 471
  • [26] Estimation via Markov chain Monte Carlo
    Spall, JC
    IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (02): : 34 - 45
  • [27] Estimation via Markov chain Monte Carlo
    Spall, JC
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2559 - 2564
  • [28] Gambling with the truth: Markov chain Monte Carlo
    Kendall, WS
    CHALLENGES FOR THE 21ST CENTURY, 2000, : 83 - 101
  • [29] An introduction to Markov chain Monte Carlo methods
    Besag, J
    MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [30] THE BOOTSTRAP AND MARKOV-CHAIN MONTE CARLO
    Efron, Bradley
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (06) : 1052 - 1062