Ursolic Acid Ameliorates the Injury of H9c2 Cells Caused by Hypoxia and Reoxygenation Through Mediating CXCL2/NF-κB Pathway

被引:4
|
作者
Bian, Zhongrui [1 ]
Xu, Fei [1 ]
Liu, Hui [1 ]
Du, Yimeng [1 ]
机构
[1] Shandong Univ, Dept Cardiol, Hosp 2, 247 Beiyuan St, Jinan 250033, Shandong, Peoples R China
关键词
HY-18739; Inflammation; Oxidative stress; siRNA; NF-KAPPA-B; ISCHEMIA-REPERFUSION; OXIDATIVE STRESS; PROTECTS; INFLAMMATION; ACTIVATION; EXPRESSION; CHEMOKINES; CXCL2;
D O I
10.1536/ihj.21-807
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Ursolic acid (UA) has been reported to possess several biological benefits, such as anti-cancer, anti-inflammation, antibacterial, and neuroprotective functions. This study detects the function and molecular mecha-nism of UA in H9c2 cells under hypoxia and reoxygenation (H/R) conditions. Under H/R stimulation, the effects of UA on H9c2 cells were examined using ELISA and western blot assays. The Comparative Toxicogenomics Database was employed to analyze the target molecule of UA. Small interfering RNA was used to knock down CXCL2 expression, further exploring the function of CXCL2 in H/R-induced H9c2 cells. The genes related to the nuclear factor-kappa B (NF--KB) pathway were assessed using western blot analysis. Significant effects of UA on H/R-induced H9c2 cell damage were observed, accompanied by reduced inflammation and oxidative stress injury. Additionally, the increased level of CXCL2 in H/R-induced H9c2 cells was reduced after UA stimulation. Moreover, CXCL2 knockdown strengthened the beneficial effect of UA on H/R-induced H9c2 cells. HY-18739, an activator of the NF-kappa B pathway, can increase CXCL2 expression. Moreover, the increased levels of p-P65 NF-kappa B and p-I-KB alpha in H/R-induced H9c2 cells were remarkably attenuated by UA treatment. In summary, the results indicated that UA may alleviate the damage of H9c2 cells by targeting the CXCL2/NF-kappa B pathway under H/R conditions.
引用
收藏
页码:755 / 762
页数:8
相关论文
共 50 条
  • [21] The Mitochondrial-Derived Peptide MOTS-c Attenuates Oxidative Stress Injury and the Inflammatory Response of H9c2 Cells Through the Nrf2/ARE and NF-κB Pathways
    Shen, Caijie
    Wang, Jian
    Feng, Mingjun
    Peng, Jianye
    Du, Xiangfeng
    Chu, Huimin
    Chen, Xiaomin
    CARDIOVASCULAR ENGINEERING AND TECHNOLOGY, 2022, 13 (05) : 651 - 661
  • [22] Role of endoplasmic reticulum oxidase 1α in H9C2 cardiomyocytes following hypoxia/reoxygenation injury
    Lai, Lina
    Liu, Yue
    Liu, Yuanyuan
    Zhang, Ni
    Cao, Shilu
    Zhang, Xiaojing
    Wu, Di
    MOLECULAR MEDICINE REPORTS, 2020, 22 (02) : 1420 - 1428
  • [23] Isorhamnetin protects against hypoxia/reoxygenation-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes
    Zhao, Ting-Ting
    Yang, Tian-Lun
    Gong, Li
    Wu, Pei
    GENE, 2018, 666 : 92 - 99
  • [24] Preventive treatment of tripdiolide ameliorates kidney injury in diabetic mice by modulating the Nrf2/NF-κB pathway
    Yuan, Bo
    Jia, Dan
    Gao, Baoshan
    FRONTIERS IN PHARMACOLOGY, 2025, 16
  • [25] High temperature requirement A3 attenuates hypoxia/reoxygenation induced injury in H9C2 cells via suppressing inflammatory responses
    Shen, Zhiming
    Sun, Fei
    Lu, Yi
    Yuan, Lei
    Ge, Shenglin
    Gong, Qian
    Shi, Hongcan
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2022, 928
  • [26] Imperatorin protects H9c2 cardiomyoblasts cells from hypoxia/reoxygenation-induced injury through activation of ERK signaling pathway
    Liao, Bihong
    Chen, Ruimian
    Lin, Feng
    Mai, Aihuan
    Chen, Jie
    Li, Huimin
    Dong, Shaohong
    Xu, Zhenglei
    SAUDI PHARMACEUTICAL JOURNAL, 2017, 25 (04) : 615 - 619
  • [27] Acetylcholine Attenuates Hypoxia/Reoxygenation Injury by Inducing Mitophagy Through PINK1/Parkin Signal Pathway in H9c2 Cells
    Sun, Lei
    Zhao, Mei
    Yang, Yang
    Xue, Run-Qing
    Yu, Xiao-Jiang
    Liu, Jian-Kang
    Zang, Wei-Jin
    JOURNAL OF CELLULAR PHYSIOLOGY, 2016, 231 (05) : 1171 - 1181
  • [28] Oxidative Stress Mediates Chemical Hypoxia-Induced Injury and Inflammation by Activating NF-κb-COX-2 Pathway in HaCaT Cells
    Yang, Chuntao
    Ling, Hongzhong
    Zhang, Meifen
    Yang, Zhanli
    Wang, Xiuyu
    Zeng, Fanqin
    Wang, Chuhuai
    Feng, Jianqiang
    MOLECULES AND CELLS, 2011, 31 (06) : 531 - 538
  • [29] Exenatide protects against hypoxia/reoxygenation-induced apoptosis by improving mitochondrial function in H9c2 cells
    Chang, Guanglei
    Zhang, Dongying
    Liu, Jian
    Zhang, Peng
    Ye, Lin
    Lu, Kai
    Duan, Qin
    Zheng, Aihua
    Qin, Shu
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2014, 239 (04) : 414 - 422
  • [30] High glucose-induced upregulation of CD36 promotes inflammation stress via NF-κB in H9c2 cells
    Han, Baosheng
    Wang, Jianzhong
    Wu, Jiawei
    Yan, Fang
    Wang, Yaru
    Li, Jun
    MOLECULAR MEDICINE REPORTS, 2021, 24 (05)