General methodology for inferring failure-spreading dynamics in networks

被引:11
作者
Guan, Xiangyang [1 ]
Chen, Cynthia [1 ]
机构
[1] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
network; spreading process; cascading failures; infrastructure; epidemic; CASCADING FAILURES; PERCOLATION; ROBUSTNESS; INFLUENZA; EPIDEMIC; SIMULATION; MODEL;
D O I
10.1073/pnas.1722313115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A generic modeling framework to infer the failure-spreading process based on failure times of individual nodes is proposed and tested in four simulation studies: one for cascading failures in interdependent power and transportation networks, one for influenza epidemics, one benchmark test case for congestion cascade in a transportation network, and one benchmark test case for cascading power outages. Four general failure-spreading mechanisms-external, temporal, spatial, and functional-are quantified to capture what drives the spreading of failures. With the failure time of each node given, the proposed methodology demonstrates remarkable capability of inferring the underlying general failure-spreading mechanisms and accurately reconstructing the failure-spreading process in all four simulation studies. The analysis of the two benchmark test cases also reveals the robustness of the proposed methodology: It is shown that a failure-spreading process embedded by specific failure-spreading mechanisms such as flow redistribution can be captured with low uncertainty by our model. The proposed methodology thereby presents a promising channel for providing a generally applicable framework for modeling, understanding, and controlling failure spreading in a variety of systems.
引用
收藏
页码:EB125 / EB134
页数:10
相关论文
共 70 条
[21]   Ecology and evolution of the flu [J].
Earn, DJD ;
Dushoff, J ;
Levin, SA .
TRENDS IN ECOLOGY & EVOLUTION, 2002, 17 (07) :334-340
[22]   A "Random Chemistry" Algorithm for Identifying Collections of Multiple Contingencies That Initiate Cascading Failure [J].
Eppstein, Margaret J. ;
Hines, Paul D. H. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (03) :1698-1705
[23]   Modelling disease outbreaks in realistic urban social networks [J].
Eubank, S ;
Guclu, H ;
Kumar, VSA ;
Marathe, MV ;
Srinivasan, A ;
Toroczkai, Z ;
Wang, N .
NATURE, 2004, 429 (6988) :180-184
[24]   The foot-and-mouth epidemic in Great Britain: Pattern of spread and impact of interventions [J].
Ferguson, NM ;
Donnelly, CA ;
Anderson, RM .
SCIENCE, 2001, 292 (5519) :1155-1160
[25]   Multi-modal ultra-high resolution structural 7-Tesla MRI data repository [J].
Forstmann, Birte U. ;
Keuken, Max C. ;
Schafer, Andreas ;
Bazin, Pierre-Louis ;
Alkemade, Anneke ;
Turner, Robert .
SCIENTIFIC DATA, 2014, 1
[26]   Increasing influenza vaccination in New York City taxi drivers: A community driven approach [J].
Gany, Francesca ;
Rau-Murthy, Rohini ;
Mujawar, Imran ;
Network, Taxi ;
Prasad, Lakshmi ;
Roberts, Nicole .
VACCINE, 2015, 33 (22) :2521-2523
[27]   Mitigation strategies for pandemic influenza in the United States [J].
Germann, TC ;
Kadau, K ;
Longini, IM ;
Macken, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) :5935-5940
[28]   Sandpile on scale-free networks [J].
Goh, KI ;
Lee, DS ;
Kahng, B ;
Kim, D .
PHYSICAL REVIEW LETTERS, 2003, 91 (14)
[29]  
Gomez-Rodriguez M., 2013, P 30 INT C MACH LEAR, P666
[30]   Epidemic dynamics on an adaptive network [J].
Gross, Thilo ;
D'Lima, Carlos J. Dommar ;
Blasius, Bernd .
PHYSICAL REVIEW LETTERS, 2006, 96 (20)