Recurrent neural networks for computing weighted Moore-Penrose inverse

被引:68
|
作者
Wei, YM [1 ]
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
convex quadratic programming; recurrent neural network; weighted Moore-Penrose inverse; Frobenius norm;
D O I
10.1016/S0096-3003(99)00147-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three recurrent neural networks are presented for computing the weighted Moore-Penrose inverse of rank-deficient matrices. The first recurrent neural network has the dynamical equation similar to the one proposed earlier for matrix inversion and is capable of weighted Moore-Penrose inverse under the condition of zero initial states. The second recurrent neural network consists of an array of neurons corresponding to a weighted Moore-Penrose inverse matrix with decaying self-connections and constant connections in each row or column. The third recurrent neural network consists of two layers of neuron arrays corresponding, respectively, to a weighted Moore-Penrose inverse and a Lagrangian matrix with constant connections. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:279 / 287
页数:9
相关论文
共 50 条