Adaptive Fuzzy Control of Spacecraft Proximity Operations Using Hierarchical Fuzzy Systems

被引:57
作者
Sun, Liang [1 ]
Huo, Wei [1 ]
机构
[1] Beihang Univ, Res Div 7, Sci & Technol Aircraft Control Lab, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
关键词
Adaptive control; dynamic couplings; hierarchical fuzzy systems; model uncertainty; proximity operations; spacecraft control; OUTPUT-FEEDBACK CONTROL; RELATIVE POSITION; UNIVERSAL APPROXIMATION; ATTITUDE-CONTROL; TRACKING; SYNCHRONIZATION; DOCKING; ROBOT;
D O I
10.1109/TMECH.2015.2494607
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The six-degrees-of-freedom relative motion control of a chaser spacecraft approaching a free tumbling target in deep space is investigated in this paper. In view of unknown model uncertainties and complex dynamic couplings in the dynamical model, a direct adaptive fuzzy nonlinear controller is constructed by using fuzzy logic systems to approximate the uncertainties and couplings, where the parameter vectors of fuzzy systems are estimated online by using a projection-based adaptive control method. Due to the great dimension of the system variables, hierarchical fuzzy logic systems are employed in the fuzzy control to reduce the amount of fuzzy rules and alleviate the online computation burden in the proposed control algorithm. It is proved that tracking errors of the chaser spacecraft and adaptive parameters of the fuzzy systems are uniformly ultimately bounded. Numerical simulations are performed to demonstrate the performance of the proposed control strategy.
引用
收藏
页码:1629 / 1640
页数:12
相关论文
共 42 条
[1]  
[Anonymous], 2002, P I MECH ENG I-J SYS
[2]   Hierarchical Fuzzy Logic System for Implementing Maintenance Schedules of Offshore Power Systems [J].
Chang, C. S. ;
Wang, Zhaoxia ;
Yang, Fan ;
Tan, W. W. .
IEEE TRANSACTIONS ON SMART GRID, 2012, 3 (01) :3-11
[3]   A note on universal approximation by hierarchical fuzzy systems [J].
Chen, W ;
Wang, LX .
INFORMATION SCIENCES, 2000, 123 (3-4) :241-248
[4]   Multi-agent systems with reinforcement hierarchical neuro-fuzzy models [J].
Correa, Marcelo Franca ;
Vellasco, Marley ;
Figueiredo, Karla .
AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2014, 28 (06) :867-895
[5]   Fuzzy control of a mobile robot - Implementation using a MATLAB-based rapid prototyping system [J].
Cupertino, Francesco ;
Giordano, Vincenzo ;
Naso, David ;
Delfine, Luigi .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2006, 13 (04) :74-81
[6]   Model Predictive Control approach for guidance of spacecraft rendezvous and proximity maneuvering [J].
Di Cairano, S. ;
Park, H. ;
Kolmanovsky, I. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2012, 22 (12) :1398-1427
[7]   Intelligent Control of Electroactive Polymer Actuators Based on Fuzzy and Neurofuzzy Methodologies [J].
Druitt, Christopher M. ;
Alici, Gursel .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014, 19 (06) :1951-1962
[8]   Direct adaptive fuzzy control for a nonlinear helicopter system [J].
Ho, H. F. ;
Wong, Y. K. ;
Rad, A. B. .
AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2008, 80 (02) :124-128
[9]   Adaptive Fuzzy Hierarchical Sliding-Mode Control for the Trajectory Tracking of Uncertain Underactuated Nonlinear Dynamic Systems [J].
Hwang, Chih-Lyang ;
Chiang, Chiang-Cheng ;
Yeh, Yao-Wei .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (02) :286-299
[10]  
Ikeda Y, 2011, IEEE DECIS CONTR P, P6184, DOI 10.1109/CDC.2011.6160253