Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing

被引:57
作者
Shin, Sungchul [1 ]
Hyun, Jinho [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Biosyst & Biomat Sci & Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Dept Agr Forestry & Bioresources, Seoul 08826, South Korea
[3] Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Carboxymethylation; Cellulose nanofiber; Matrix-assisted 3D printing; Fiber dimension; Rheology; BACTERIAL-CELLULOSE; NANOCELLULOSE; SCAFFOLDS; AEROGELS; FILM;
D O I
10.1016/j.carbpol.2021.117976
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Optimization of the rheological properties of the matrix is critical for high-fidelity matrix-assisted 3D printing (MAP), which enables the free-form fabrication of fluidic soft materials. This report describes the generic criteria observable in the printing process of cellulose nanofiber (CNF) hydrogels: the sharpness of an angled line, the cross-sectional ratio of a feature, the surface roughness of features, and the completeness of multi-line writing. The concentration and physical properties of the CNF affects the printing fidelity by changing the values of the four criteria, which are closely related to the rheological properties of the matrix. The printing fidelity can be enhanced by the optimal combination of the inks and the CNF matrix. Hydrophilic and hydrophobic inks are printed in the CNF matrix demonstrating as a universal matrix for free-form fabrication with liquid inks.
引用
收藏
页数:12
相关论文
共 39 条
[1]   Formation of hydrogels from cellulose nanofibers [J].
Abe, Kentaro ;
Yano, Hiroyuki .
CARBOHYDRATE POLYMERS, 2011, 85 (04) :733-737
[2]   Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time [J].
Benhamou, Karima ;
Dufresne, Alain ;
Magnin, Albert ;
Mortha, Gerard ;
Kaddami, Hamid .
CARBOHYDRATE POLYMERS, 2014, 99 :74-83
[3]   Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content [J].
Besbes, Iskander ;
Alila, Sabrine ;
Boufi, Sami .
CARBOHYDRATE POLYMERS, 2011, 84 (03) :975-983
[4]   Writing in the granular gel medium [J].
Bhattacharjee, Tapomoy ;
Zehnder, Steven M. ;
Rowe, Kyle G. ;
Jain, Suhani ;
Nixon, Ryan M. ;
Sawyer, W. Gregory ;
Angelini, Thomas E. .
SCIENCE ADVANCES, 2015, 1 (08)
[5]   Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Guan, Qing-Fang ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (34) :4746-4752
[6]   Superelastic, Hygroscopic, and Ionic Conducting Cellulose Nanofibril Monoliths by 3D Printing [J].
Chen, Yuan ;
Yu, Zhengyang ;
Ye, Yuhang ;
Zhang, Yifan ;
Li, Gaiyun ;
Jiang, Feng .
ACS NANO, 2021, 15 (01) :1869-1879
[7]   Enhancing the Biomechanical Performance of Anisotropic Nanofibrous Scaffolds in Tendon Tissue Engineering: Reinforcement with Cellulose Nanocrystals [J].
Domingues, Rui M. A. ;
Chiera, Silvia ;
Gershovich, Pavel ;
Motta, Antonella ;
Reis, Rui L. ;
Gomes, Manuela E. .
ADVANCED HEALTHCARE MATERIALS, 2016, 5 (11) :1364-1375
[8]   Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array [J].
Fujisaki, Yoshihide ;
Koga, Hirotaka ;
Nakajima, Yoshiki ;
Nakata, Mitsuru ;
Tsuji, Hiroshi ;
Yamamoto, Toshihiro ;
Kurita, Taiichiro ;
Nogi, Masaya ;
Shimidzu, Naoki .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (12) :1657-1663
[9]   All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application [J].
Ghaderi, Moein ;
Mousavi, Mohammad ;
Yousefi, Hossein ;
Labbafi, Mohsen .
CARBOHYDRATE POLYMERS, 2014, 104 :59-65
[10]  
Gladman AS, 2016, NAT MATER, V15, P413, DOI [10.1038/NMAT4544, 10.1038/nmat4544]