Complexity classification in qualitative temporal constraint reasoning

被引:5
作者
Jonsson, P [1 ]
Krokhin, A
机构
[1] Linkoping Univ, Dept Comp & Informat Sci, SE-58183 Linkoping, Sweden
[2] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
temporal reasoning; constraint satisfaction; computational complexity;
D O I
10.1016/j.artint.2004.05.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the computational complexity of the qualitative algebra which is a temporal constraint formalism that combines the point algebra, the point-interval algebra and Allen's interval algebra. We identify all tractable fragments and show that every other fragment is NP-complete. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 51
页数:17
相关论文
共 23 条
[1]   MAINTAINING KNOWLEDGE ABOUT TEMPORAL INTERVALS [J].
ALLEN, JF .
COMMUNICATIONS OF THE ACM, 1983, 26 (11) :832-843
[2]  
BALBIANI P, 2002, P 4 INT WORKSH FRONT, P162
[3]   Reasoning on interval and point-based disjunctive metric constraints in temporal contexts [J].
Barber, F .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2000, 12 :35-86
[4]   Point algebras for temporal reasoning: Algorithms and complexity [J].
Broxvall, M ;
Jonsson, P .
ARTIFICIAL INTELLIGENCE, 2003, 149 (02) :179-220
[5]   Eight maximal tractable subclasses of Allen's algebra with metric time [J].
Drakengren, T ;
Jonsson, P .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1997, 7 :25-45
[6]   Twenty-one large tractable subclasses of Allen's algebra [J].
Drakengren, T ;
Jonsson, P .
ARTIFICIAL INTELLIGENCE, 1997, 93 (1-2) :297-319
[7]   COMPLEXITY AND ALGORITHMS FOR REASONING ABOUT TIME - A GRAPH-THEORETIC APPROACH [J].
GOLUMBIC, MC ;
SHAMIR, R .
JOURNAL OF THE ACM, 1993, 40 (05) :1108-1133
[8]   Expressive power and complexity in algebraic logic [J].
Hirsch, R .
JOURNAL OF LOGIC AND COMPUTATION, 1997, 7 (03) :309-351
[9]   A unifying approach to temporal constraint reasoning [J].
Jonsson, P ;
Backstrom, C .
ARTIFICIAL INTELLIGENCE, 1998, 102 (01) :143-155
[10]   Computational complexity of relating time points with intervals [J].
Jonsson, P ;
Drakengren, T ;
Bäckström, C .
ARTIFICIAL INTELLIGENCE, 1999, 109 (1-2) :273-295