Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells

被引:101
作者
Boeva, Valentina [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ]
机构
[1] Inst Curie, Ctr Rech, Paris, France
[2] INSERM, U900, Paris, France
[3] Mines ParisTech, Fontainebleau, France
[4] PSL Res Univ, Paris, France
[5] Inst Cochin, Dept Dev Reprod & Canc, Paris, France
[6] INSERM, U1016, Paris, France
[7] CNRS, UPvIR 8104, Paris, France
[8] Univ Paris 05, UMR S1016, Paris, France
关键词
CHIP-SEQ DATA; PROTEIN-DNA INTERACTIONS; OVER-REPRESENTATION; CIS-ELEMENTS; IN-VIVO; BIDIRECTIONAL PROMOTERS; WEIGHT MATRICES; GENE-EXPRESSION; WEB-SERVER; SITES;
D O I
10.3389/fgene.2016.00024
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation.
引用
收藏
页数:15
相关论文
共 119 条
[1]   High Resolution Models of Transcription Factor-DNA Affinities Improve In Vitro and In Vivo Binding Predictions [J].
Agius, Phaedra ;
Arvey, Aaron ;
Chang, William ;
Noble, William Stafford ;
Leslie, Christina .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (09)
[2]   Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes [J].
Alam, Tanvir ;
Medvedeva, Yulia A. ;
Jia, Hui ;
Brown, James B. ;
Lipovich, Leonard ;
Bajic, Vladimir B. .
PLOS ONE, 2014, 9 (10)
[3]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[4]  
[Anonymous], 2003, P 7 ANN INT C RES CO
[5]  
Antoniou P, 2006, LECT NOTES COMPUT SC, V4094, P69
[6]   Diversity and Complexity in DNA Recognition by Transcription Factors [J].
Badis, Gwenael ;
Berger, Michael F. ;
Philippakis, Anthony A. ;
Talukder, Shaheynoor ;
Gehrke, Andrew R. ;
Jaeger, Savina A. ;
Chan, Esther T. ;
Metzler, Genita ;
Vedenko, Anastasia ;
Chen, Xiaoyu ;
Kuznetsov, Hanna ;
Wang, Chi-Fong ;
Coburn, David ;
Newburger, Daniel E. ;
Morris, Quaid ;
Hughes, Timothy R. ;
Bulyk, Martha L. .
SCIENCE, 2009, 324 (5935) :1720-1723
[7]  
Bailey T L, 1995, Proc Int Conf Intell Syst Mol Biol, V3, P21
[8]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[9]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[10]   Bidirectional Promoters of Insects: Genome-Wide Comparison, Evolutionary Implication and Influence on Gene Expression [J].
Behura, Susanta K. ;
Severson, David W. .
JOURNAL OF MOLECULAR BIOLOGY, 2015, 427 (02) :521-536