Patterson-sullivan distributions and quantum ergodicity

被引:17
作者
Anantharaman, Nalini
Zelditch, Steve
机构
[1] Ecole Normale Super Lyon, F-69364 Lyon 07, France
[2] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
ANNALES HENRI POINCARE | 2007年 / 8卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00023-006-0311-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article gives relations between two types of phase space distributions associated to eigenfunctions phi ir(j) of the Laplacian on a compact hyperbolic surface X-Gamma: Wigner distributions integral(S*X Gamma) a dWir(j) = [Op(a)phi ir(j), phi ir(j))L-2 (x(Gamma)) which arise in quantum chaos. They are invariant under the wave group. Patterson-Sullivan distributions Psir(j), which are the residues of the dynamical zeta-functions Z(s;a):= Sigma(gamma) e(-sL gamma)/1-e-L gamma integral(gamma o) a (where the sum runs over closed geodesics) at the poles s = 1/2+ir(j). They are invariant under the geodesic flow. We prove that these distributions (when suitably normalized) are asymptotically equal as r(j) -> infinity. We also give exact relations between them. This correspondence gives a new relation between classical and quantum dynamics on a hyperbolic surface, and consequently a formulation of quantum ergodicity in terms of classical ergodic theory.
引用
收藏
页码:361 / 426
页数:66
相关论文
共 51 条
[1]  
AGMON S, 1992, PITMAN RES NOTES MAT, V269, P1
[2]  
ALVAREZPARRILLA A, 2005, INT J MATH MATH SCI, V8, P1299
[3]  
ANANTHARAMAN N, IN PRESS
[4]  
ANANTHARAMAN N, 2006, HELF DELOCALIZATION
[5]  
[Anonymous], 1981, PROGR MATH
[6]  
[Anonymous], AM MATH SOC TRANSL
[7]   Sobolev norms of automorphic functionals [J].
Bernstein, J ;
Reznikov, A .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2002, 2002 (40) :2155-2174
[8]   Analytic continuation of representations and estimates of automorphic forms [J].
Bernstein, J ;
Reznikov, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :329-352
[9]   Automorphic forms and differentiability properties [J].
Chamizo, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (05) :1909-1935
[10]   A note on Holder regularity of invariant distributions for horocycle flows [J].
Cosentino, S .
NONLINEARITY, 2005, 18 (06) :2715-2726