On the Hyers-Ulam stability of Riemann-Liouville multi-order fractional differential equations

被引:6
作者
Cuong, D. X. [1 ]
机构
[1] Vietnam Maritime Univ, Dept Math, 484 Lach Tray, Hai Phong, Vietnam
关键词
Fractional multi-order systems; Existence and uniqueness solutions; Weighted norm; Fixed point theorem; EXISTENCE;
D O I
10.1007/s13370-019-00701-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by using a Bielecki's type norm and Banach fixed point theorem, we obtain a result on the Hyers-Ulam stability of Riemann-Liouville multi-order fractional differential equations.
引用
收藏
页码:1041 / 1047
页数:7
相关论文
共 17 条
[1]  
Ali Z, 2018, B MALAYS MATH SCI SO
[2]  
[Anonymous], 2010, LECT NOTES MATH
[3]  
[Anonymous], N HOLLAND MATH STUDI
[4]   On the global existence of solutions to a class of fractional differential equations [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1835-1841
[5]   Existence, Uniqueness, and Exponential Boundedness of Global Solutions to Delay Fractional Differential Equations [J].
Cong, N. D. ;
Tuan, H. T. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (05)
[6]   ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF LINEAR MULTI-ORDER FRACTIONAL DIFFERENTIAL SYSTEMS [J].
Diethelm, Kai ;
Siegmund, Stefan ;
Tuan, H. T. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) :1165-1195
[7]   ON THE EXISTENCE AND UNIQUENESS AND FORMULA FOR THE SOLUTION OF R-L FRACTIONAL CAUCHY PROBLEM IN Rn [J].
Idczak, Dariusz ;
Kamocki, Rafal .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (04) :538-553
[8]   Basic theory of fractional differential equations [J].
Lakshmikantham, V. ;
Vatsala, A. S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) :2677-2682
[9]  
Miller K.S., 1993, INTRO FRACTIONAL CAL
[10]  
Oldham K. B., 1974, FRACTIONAL CALCULUS, DOI DOI 10.1016/S0076-5392(09)60219-8