Poisson structures on finitary incidence algebras

被引:16
作者
Kaygorodov, Ivan [1 ,2 ]
Khrypchenko, Mykola [3 ]
机构
[1] Univ Fed ABC, CMCC, Santo Andre, SP, Brazil
[2] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[3] Univ Fed Santa Catarina, Dept Matemat, Florianopolis, SC, Brazil
关键词
Poisson structure; Finitary incidence algebra; Incidence algebra; Biderivation;
D O I
10.1016/j.jalgebra.2021.03.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a full description of the Poisson structures on the finitary incidence algebra FI(P, R) of an arbitrary poset P over a commutative unital ring R. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:402 / 420
页数:19
相关论文
共 30 条
[1]   Poisson algebras via model theory and differential-algebraic geometry [J].
Bell, Jason ;
Launois, Stephane ;
Sanchez, Omar Leon ;
Moosa, Rahim .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (07) :2019-2049
[2]   Biderivations of triangular algebras [J].
Benkovic, Dominik .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (09) :1587-1602
[3]   The derived non-commutative Poisson bracket on Koszul Calabi-Yau algebras [J].
Chen, Xiaojun ;
Eshmatov, Alimjon ;
Eshmatov, Farkhod ;
Yang, Song .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (01) :111-160
[4]   Local automorphisms of finitary incidence algebras [J].
Courtemanche, Jordan ;
Dugas, Manfred ;
Herden, Daniel .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 :221-257
[5]   Poisson structures on moduli spaces of representations [J].
Crawley-Boevey, William .
JOURNAL OF ALGEBRA, 2011, 325 (01) :205-215
[6]   Double Poisson structures on finite dimensional semi-simple algebras [J].
de Weyer, Geert Van .
ALGEBRAS AND REPRESENTATION THEORY, 2008, 11 (05) :437-460
[7]  
Drinfel'd V G, 1987, P INT C MATH BERKELE, P798
[8]   Ring theory from symplectic geometry [J].
Farkas, DR ;
Letzter, G .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 125 (1-3) :155-190
[9]   Poisson deformations of symplectic quotient singularities [J].
Ginzburg, V ;
Kaledin, D .
ADVANCES IN MATHEMATICS, 2004, 186 (01) :1-57
[10]  
HUEBSCHMANN J, 1990, J REINE ANGEW MATH, V408, P57