Simulation of internal stress waves generated by laser-induced damage in multilayer dielectric gratings

被引:9
作者
Gracewski, S. M. [1 ]
Boylan, S. [2 ]
Lambropoulos, J. C. [1 ,2 ]
Oliver, J. B. [2 ]
Kessler, T. J. [2 ]
Demos, S. G. [2 ]
机构
[1] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Laser Energet Lab, 250 East River Rd, Rochester, NY 14623 USA
来源
OPTICS EXPRESS | 2018年 / 26卷 / 14期
关键词
VACUUM; PERFORMANCE; THRESHOLD; ABLATION; MODULUS; PULSES; GROWTH;
D O I
10.1364/OE.26.018412
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Multilayer dielectric (MLD) gratings used in ultrahigh-intensity laser systems often exhibit a laser-induced damage performance below that of their constituent materials. Reduced performance may arise from fabrication-and/or design-related issues. Finite element models were developed to simulate stress waves in MLD grating structures generated by laser-induced damage events. These models specifically investigate the influence of geometric and material parameters on how stress waves can lead to degradation of material structural integrity that can have adverse effects on its optical performance under subsequent laser irradiation: closer impedance matching of the layer materials reduces maximum interface stresses by similar to 20% to 30%; increasing sole thickness from 50 nm to 500 nm reduces maximum interface stresses by similar to 50%. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:18412 / 18422
页数:11
相关论文
共 26 条
[1]   Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum [J].
Alessi, David A. ;
Carr, C. Wren ;
Hackel, Richard P. ;
Negres, Raluca A. ;
Stanion, Kenneth ;
Fair, James E. ;
Cross, David A. ;
Nissen, James ;
Luthi, Ronald ;
Guss, Gabe ;
Britten, Jerald A. ;
Gourdin, William H. ;
Haefner, Constantin .
OPTICS EXPRESS, 2015, 23 (12) :15532-15544
[2]   Evaluation of cleaning methods for multilayer diffraction gratings [J].
Ashe, B. ;
Marshall, K. L. ;
Giacofei, C. ;
Rigatti, A. L. ;
Kessler, T. J. ;
Schmid, A. W. ;
Oliver, J. B. ;
Keck, J. ;
Kozlov, A. .
LASER-INDUCED DAMAGE IN OPTICAL MATERIALS: 2006, 2007, 6403
[3]  
Ashe B., 2007, P SOC PHOTO-OPT INS, V6720
[4]   Shock waves from a water-confined laser-generated plasma [J].
Berthe, L ;
Fabbro, R ;
Peyre, P ;
Tollier, L ;
Bartnicki, E .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (06) :2826-2832
[5]  
Britten J. A., 2008, U. S. Patent No, Patent No. [2008/ 0062522 A1, 2008/0062522]
[6]  
Britten J. A., 2008, U. S. Patent No, Patent No. [2008/ 0047584 A1, 2008/0047584]
[7]   Relaxation dynamics of nanosecond laser superheated material in dielectrics [J].
Demos, Stavros G. ;
Negres, Raluca A. ;
Raman, Rajesh N. ;
Feit, Michael D. ;
Manes, Kenneth R. ;
Rubenchik, Alexander M. .
OPTICA, 2015, 2 (08) :765-772
[8]   High-speed photographic study of laser damage and ablation [J].
Field, J. E. ;
Amer, E. ;
Gren, P. ;
Zafar, M. A. ;
Walley, S. M. .
IMAGING SCIENCE JOURNAL, 2015, 63 (03) :119-136
[9]   Asymmetrical damage growth of multilayer dielectric gratings induced by picosecond laser pulses [J].
Hao, Yanfei ;
Sun, Mingying ;
Guo, Yajing ;
Shi, Shuang ;
Pan, Xue ;
Pang, Xiangyang ;
Zhu, Jianqiang .
OPTICS EXPRESS, 2018, 26 (07) :8791-8804
[10]   The role of electric field polarization of the incident laser beam in the short pulse damage mechanism of pulse compression gratings [J].
Hocquet, Steve ;
Neauport, Jerome ;
Bonod, Nicolas .
APPLIED PHYSICS LETTERS, 2011, 99 (06)