HYBRID CONTINUOUS TIME-MONTE CARLO SIMULATION OF DISPERSE SYSTEMS

被引:0
作者
Lakatos, Bela G. [1 ]
Barkanyi, Agnes [1 ]
Nemeth, Sandor [1 ]
机构
[1] Univ Pannonia, Dept Proc Engn, H-8200 Veszprem, Hungary
来源
EUROPEAN SIMULATION AND MODELLING CONFERENCE 2013 | 2013年
关键词
Disperse system; Multidimensional population balance equation; Hybrid continuous time-Monte Carlo algorithm; Simulation; Suspension polymerization; Micro-mixing; POPULATION BALANCE-EQUATIONS; STOCHASTIC SIMULATION; COAGULATION; DISCRETIZATION; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A hybrid continuous time-Monte Carlo method for solution of equations of a detailed population balance model is presented for two phase disperse systems perfectly mixed on macrolevel. The dispersed phase is described by a population balance equation including aggregation or coalescence and breakage of particles, as well as collision induced exchange of mass of species and heat between the particles. The resulted population balance equation is solved by coupling the deterministic continuous time computation of heat and mass balances and chemical reactions with the random discrete time events of particles population using Monte Carlo simulation. Applicability of the method is illustrated by simulation of a suspension polymerization reactor and a continuous stirred tank coalescence/redispersion reactor.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
[21]   Bias point selection in the importance sampling Monte Carlo simulation of systems [J].
Bucklew, JA ;
Gubner, JA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (01) :152-159
[22]   Monte Carlo Simulation for Optimization of Hybrid Fuel Cell Bus Powertrain Components [J].
Freudiger, D. R. ;
Bigelow, E. N. ;
Yurkovich, B. J. .
2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, :879-885
[23]   Special Issue on "Monte Carlo Simulation of Soft Matter Systems" EDITORIAL [J].
Mavrantzas, Vlasis G. ;
Peristeras, Loukas D. ;
Baig, Chunggi .
FRONTIERS IN PHYSICS, 2021, 9
[24]   The OpenGATE ecosystem for Monte Carlo simulation in medical physics [J].
Sarrut, David ;
Arbor, Nicolas ;
Baudier, Thomas ;
Borys, Damian ;
Etxebeste, Ane ;
Fuchs, Hermann ;
Gajewski, Jan ;
Grevillot, Loiec ;
Jan, Sebastien ;
Kagadis, George C. ;
Kang, Han Gyu ;
Kirov, Assen ;
Kochebina, Olga ;
Krzemien, Wojciech ;
Lomax, Antony ;
Papadimitroulas, Panagiotis ;
Pommranz, Christian ;
Roncali, Emilie ;
Rucinski, Antoni ;
Winterhalter, Carla ;
Maigne, Lydia .
PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (18)
[25]   Exploring glycogen biosynthesis through Monte Carlo simulation [J].
Zhang, Peng ;
Nada, Sharif S. ;
Tan, Xinle ;
Deng, Bin ;
Sullivan, Mitchell A. ;
Gilbert, Robert G. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 116 :264-271
[26]   Efficient Monte Carlo Sampling for Molecular Systems Using Continuous Normalizing Flow [J].
Endo, Katsuhiro ;
Yuhara, Daisuke ;
Yasuoka, Kenji .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (03) :1395-1405
[27]   Compressible generalized hybrid Monte Carlo [J].
Fang, Youhan ;
Sanz-Serna, J. M. ;
Skeel, Robert D. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (17)
[28]   Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies [J].
Li Ping ;
Xu Yu-Tang .
ACTA PHYSICA SINICA, 2017, 66 (21)
[29]   Hybrid fuzzy Monte Carlo technique for reliability assessment in transmission power systems [J].
Canizes, Bruno ;
Soares, Joao ;
Vale, Zita ;
Khodr, H. M. .
ENERGY, 2012, 45 (01) :1007-1017
[30]   A Monte Carlo simulation of the Bernoulli principle [J].
Mohazzabi, P ;
Bernhardt, MD .
PHYSICA A, 1996, 233 (1-2) :153-162