HYBRID CONTINUOUS TIME-MONTE CARLO SIMULATION OF DISPERSE SYSTEMS

被引:0
作者
Lakatos, Bela G. [1 ]
Barkanyi, Agnes [1 ]
Nemeth, Sandor [1 ]
机构
[1] Univ Pannonia, Dept Proc Engn, H-8200 Veszprem, Hungary
来源
EUROPEAN SIMULATION AND MODELLING CONFERENCE 2013 | 2013年
关键词
Disperse system; Multidimensional population balance equation; Hybrid continuous time-Monte Carlo algorithm; Simulation; Suspension polymerization; Micro-mixing; POPULATION BALANCE-EQUATIONS; STOCHASTIC SIMULATION; COAGULATION; DISCRETIZATION; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A hybrid continuous time-Monte Carlo method for solution of equations of a detailed population balance model is presented for two phase disperse systems perfectly mixed on macrolevel. The dispersed phase is described by a population balance equation including aggregation or coalescence and breakage of particles, as well as collision induced exchange of mass of species and heat between the particles. The resulted population balance equation is solved by coupling the deterministic continuous time computation of heat and mass balances and chemical reactions with the random discrete time events of particles population using Monte Carlo simulation. Applicability of the method is illustrated by simulation of a suspension polymerization reactor and a continuous stirred tank coalescence/redispersion reactor.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
  • [21] Monte Carlo Simulation for Optimization of Hybrid Fuel Cell Bus Powertrain Components
    Freudiger, D. R.
    Bigelow, E. N.
    Yurkovich, B. J.
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 879 - 885
  • [22] Bias point selection in the importance sampling Monte Carlo simulation of systems
    Bucklew, JA
    Gubner, JA
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (01) : 152 - 159
  • [23] Special Issue on "Monte Carlo Simulation of Soft Matter Systems" EDITORIAL
    Mavrantzas, Vlasis G.
    Peristeras, Loukas D.
    Baig, Chunggi
    FRONTIERS IN PHYSICS, 2021, 9
  • [24] The OpenGATE ecosystem for Monte Carlo simulation in medical physics
    Sarrut, David
    Arbor, Nicolas
    Baudier, Thomas
    Borys, Damian
    Etxebeste, Ane
    Fuchs, Hermann
    Gajewski, Jan
    Grevillot, Loiec
    Jan, Sebastien
    Kagadis, George C.
    Kang, Han Gyu
    Kirov, Assen
    Kochebina, Olga
    Krzemien, Wojciech
    Lomax, Antony
    Papadimitroulas, Panagiotis
    Pommranz, Christian
    Roncali, Emilie
    Rucinski, Antoni
    Winterhalter, Carla
    Maigne, Lydia
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (18)
  • [25] Exploring glycogen biosynthesis through Monte Carlo simulation
    Zhang, Peng
    Nada, Sharif S.
    Tan, Xinle
    Deng, Bin
    Sullivan, Mitchell A.
    Gilbert, Robert G.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 116 : 264 - 271
  • [26] Efficient Monte Carlo Sampling for Molecular Systems Using Continuous Normalizing Flow
    Endo, Katsuhiro
    Yuhara, Daisuke
    Yasuoka, Kenji
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (03) : 1395 - 1405
  • [27] Compressible generalized hybrid Monte Carlo
    Fang, Youhan
    Sanz-Serna, J. M.
    Skeel, Robert D.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (17)
  • [28] Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies
    Li Ping
    Xu Yu-Tang
    ACTA PHYSICA SINICA, 2017, 66 (21)
  • [29] Hybrid fuzzy Monte Carlo technique for reliability assessment in transmission power systems
    Canizes, Bruno
    Soares, Joao
    Vale, Zita
    Khodr, H. M.
    ENERGY, 2012, 45 (01) : 1007 - 1017
  • [30] A Monte Carlo simulation of the Bernoulli principle
    Mohazzabi, P
    Bernhardt, MD
    PHYSICA A, 1996, 233 (1-2): : 153 - 162