Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies

被引:17
|
作者
Zuerch, M. [1 ,2 ,3 ]
Jung, R. [4 ]
Spaeth, C. [5 ,6 ]
Tuemmler, J. [4 ]
Guggenmos, A. [5 ,6 ]
Attwood, D. [7 ]
Kleineberg, U. [5 ,6 ]
Stiel, H. [4 ]
Spielmann, C. [1 ,3 ]
机构
[1] Friedrich Schiller Univ Jena, Abbe Ctr Photon, Inst Opt & Quantum Elect, Max Wien Pl 1, D-07743 Jena, Germany
[2] Univ Calif Berkeley, Chem Dept, Berkeley, CA 94720 USA
[3] Helmholtz Inst Jena, Frobelstieg 3, D-07743 Jena, Germany
[4] Max Born Inst, Max Born Str 2A, D-12489 Berlin, Germany
[5] Ludwig Maximilians Univ Munchen, Coulombwall 1, D-85748 Garching, Germany
[6] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[7] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
SPATIAL COHERENCE; NM; RESOLUTION; OPTIMIZATION; HOLOGRAPHY;
D O I
10.1038/s41598-017-05789-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |mu(12)| >= 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] In situ observation of dynamic electrodeposition processes by soft x-ray fluorescence microspectroscopy and keyhole coherent diffractive imaging
    Bozzini, Benedetto
    Kourousias, George
    Gianoncelli, Alessandra
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (12)
  • [42] Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics
    Artyukov, I. A.
    Feschenko, R. M.
    Vinogradov, A. V.
    Bugayev, Ye. A.
    Devizenko, O. Y.
    Kondratenko, V. V.
    Kasyanov, Yu. S.
    Hatano, T.
    Yamamoto, M.
    Saveliev, S. V.
    MICRON, 2010, 41 (07) : 722 - 728
  • [43] Pulse duration of a partially coherent soft X-ray laser estimated from far-field speckle statistics
    Albrecht, M.
    Kozlova, M.
    Nejdl, J.
    OPTICS LETTERS, 2018, 43 (19) : 4586 - 4589
  • [44] Tomographic imaging with the use of a compact soft X-ray microscope based on a laser plasma light source
    Wachulak, P. W.
    Torrisi, A.
    Krauze, W.
    Bartnik, A.
    Kostecki, J.
    Maisano, M.
    Fiedorowicz, H.
    EUV AND X-RAY OPTICS: SYNERGY BETWEEN LABORATORY AND SPACE VI, 2019, 11032
  • [45] Observation of a plasma waveguide in a preformed plasma pumped by double-pulse laser irradiation for the efficient soft x-ray amplification
    Kawachi, Tetsuya
    Hasegawa, Noboru
    Nishikino, Masaharu
    Ochi, Yoshihiro
    Sasaki, Akira
    OPTICS LETTERS, 2009, 34 (05) : 635 - 637
  • [46] Highly Advanced High Harmonic Coherent Soft X-Ray Laser Sources Towards a Water Window Region Using Laser-Ablated Solid Target Plasma
    Kuroda, H.
    Suzuki, M.
    Baba, M.
    Ganeev, R. A.
    Ozaki, T.
    2009 LASERS & ELECTRO-OPTICS & THE PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1 AND 2, 2009, : 408 - +
  • [47] Tomography of a Cryo-immobilized Yeast Cell Using Ptychographic Coherent X-Ray Diffractive Imaging
    Giewekemeyer, K.
    Hackenberg, C.
    Aquila, A.
    Wilke, R. N.
    Groves, M. R.
    Jordanova, R.
    Lamzin, V. S.
    Borchers, G.
    Saksl, K.
    Zozulya, A. V.
    Sprung, M.
    Mancuso, A. P.
    BIOPHYSICAL JOURNAL, 2015, 109 (09) : 1986 - 1995
  • [48] In situ coherent X-ray diffraction imaging of radiation-induced mass loss in metal-polymer composite spheres
    Skjonsfjell, Eirik Torbjorn Bakken
    Chushkin, Yuriy
    Zontone, Federico
    Breiby, Dag Werner
    JOURNAL OF SYNCHROTRON RADIATION, 2018, 25 : 1162 - 1171
  • [49] Pump energy reduction for a high gain Ag X-ray laser using one long and two short pump pulses
    Banici, Romeo A.
    Cojocaru, Gabriel V.
    Ungureanu, Razvan G.
    Dabu, Razvan
    Ursescu, Daniel
    Stiel, Holger
    OPTICS LETTERS, 2012, 37 (24) : 5130 - 5132
  • [50] Extreme ultraviolet and soft X-ray imaging with compact, table top laser plasma EUV and SXR sources
    Wachulak, P. W.
    Bartnik, A.
    Kostecki, J.
    Wegrzynski, L.
    Fok, T.
    Jarocki, R.
    Szczurek, M.
    Fiedorowicz, H.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2015, 364 : 40 - 48