Quantum distance to uncontrollability and quantum speed limits

被引:4
作者
Burgarth, Daniel [1 ]
Borggaard, Jeff [2 ,3 ]
Zimboras, Zoltan [4 ,5 ,6 ]
机构
[1] Macquarie Univ, Ctr Engn Quantum Syst, Sch Math & Phys Sci, Sydney, NSW 2109, Australia
[2] Virginia Tech, Interdisciplinary Ctr Appl Math, Blacksburg, VA 24061 USA
[3] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[4] Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[5] BME MTA Lendulet Quantum Informat Theory Res Grp, POB 888, H-1535 Budapest, Hungary
[6] Budapest Univ Technol & Econ, Math Inst, H-1111 Budapest, Hungary
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
CONTROLLABILITY; COMPUTATION; SYSTEMS;
D O I
10.1103/PhysRevA.105.042402
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Distance to uncontrollability is a crucial concept in classical control theory. Here, we introduce quantum distance to uncontrollability as a measure of how close a universal quantum system is to a nonuniversal one. This allows us to provide a quantitative version of the quantum speed limit, decomposing the bound into geometric and dynamical components. We consider several physical examples including globally controlled solid state qubits, scrambling of quantum information, and a cross-Kerr system, showing that the quantum distance to uncontrollability provides a precise meaning to spectral crowding, weak interactions, and other bottlenecks to universality. We suggest that this measure should be taken into consideration in the design of quantum technology.
引用
收藏
页数:5
相关论文
共 30 条
[1]   The Lie algebra structure and controllability of spin systems [J].
Albertini, F ;
D'Alessandro, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 350 (1-3) :213-235
[2]   Controllability of quantum mechanical systems by root space decomposition of su(N) [J].
Altafini, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) :2051-2062
[3]   The roles of drift and control field constraints upon quantum control speed limits [J].
Arenz, Christian ;
Russell, Benjamin ;
Burgarth, Daniel ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2017, 19
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]   Driven Quantum Dynamics: Will It Blend? [J].
Banchi, Leonardo ;
Burgarth, Daniel ;
Kastoryano, Michael J. .
PHYSICAL REVIEW X, 2017, 7 (04)
[6]  
Borggaard J, 2011, P AMER CONTR CONF, P2381
[7]   Optimal Control at the Quantum Speed Limit [J].
Caneva, T. ;
Murphy, M. ;
Calarco, T. ;
Fazio, R. ;
Montangero, S. ;
Giovannetti, V. ;
Santoro, G. E. .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)
[8]   Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control [J].
Deffner, Sebastian ;
Campbell, Steve .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (45)
[9]  
Ebihara Y., 2006, P 45 IEEE C DEC CONT
[10]   BETWEEN CONTROLLABLE AND UNCONTROLLABLE [J].
EISING, R .
SYSTEMS & CONTROL LETTERS, 1984, 4 (05) :263-264