A note on q-weak law of large numbers

被引:4
作者
Przystalski, Marcin [1 ]
机构
[1] Poznan Univ Econ, Dept Econ, PL-61896 Poznan, Poland
关键词
Non-extensive statistical mechanics; q-Fourier transform; q-independence; q-weak convergence; Weak law of large numbers;
D O I
10.1016/j.physleta.2009.10.031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
q-limit theorems for random variables are arising from non-extensive statistical mechanics. In this note we will prove q-weak law of large numbers using the notions of q-Fourier transform, q-independence, q-weak convergence. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:123 / 125
页数:3
相关论文
共 10 条
  • [1] [Anonymous], 1995, Thermodynamics of chaotic systems: an introduction
  • [2] DasGupta A, 2008, SPRINGER TEXTS STAT, P1
  • [3] On the Gaussian q-distribution
    Diaz, Rafael
    Pariguan, Eddy
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (01) : 1 - 9
  • [4] On the closed form solutions for non-extensive Value at Risk
    Stavroyiannis, S.
    Makris, I.
    Nikolaidis, V.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (17) : 3536 - 3542
  • [5] POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS
    TSALLIS, C
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) : 479 - 487
  • [6] TSALLIS C, 2008, ESCORT MEAN VALUES C
  • [7] UMAROV S, 2007, CONDMAT0703533
  • [8] On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics
    Umarov, Sabir
    Tsallis, Constantino
    Steinberg, Stanly
    [J]. MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) : 307 - 328
  • [9] Van der Vaart Aad W, 2000, Asymptotic Statistics, V3
  • [10] Geometry of the central limit theorem in the nonextensive case
    Vignat, C.
    Plastino, A.
    [J]. PHYSICS LETTERS A, 2009, 373 (20) : 1713 - 1718